Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import gradio as gr
|
|
| 6 |
import datasets
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
|
|
|
| 9 |
|
| 10 |
from src.display.about import (
|
| 11 |
CITATION_BUTTON_LABEL,
|
|
@@ -31,12 +32,11 @@ from src.envs import (
|
|
| 31 |
HF_HOME,
|
| 32 |
)
|
| 33 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 34 |
-
from src.tools.plots import
|
| 35 |
|
| 36 |
# Configure logging
|
| 37 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 38 |
|
| 39 |
-
|
| 40 |
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
|
| 41 |
# This controls whether a full initialization should be performed.
|
| 42 |
DO_FULL_INIT = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
|
|
@@ -53,7 +53,6 @@ def time_diff_wrapper(func):
|
|
| 53 |
|
| 54 |
return wrapper
|
| 55 |
|
| 56 |
-
|
| 57 |
@time_diff_wrapper
|
| 58 |
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
|
| 59 |
"""Download dataset with exponential backoff retries."""
|
|
@@ -119,18 +118,85 @@ def init_space():
|
|
| 119 |
|
| 120 |
return leaderboard_df, eval_queue_dfs
|
| 121 |
|
| 122 |
-
|
| 123 |
-
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
|
| 124 |
-
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
|
| 125 |
leaderboard_df, eval_queue_dfs = init_space()
|
| 126 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
|
| 127 |
|
| 128 |
-
|
| 129 |
# Data processing for plots now only on demand in the respective Gradio tab
|
| 130 |
def load_and_create_plots():
|
| 131 |
plot_df = create_plot_df(create_scores_df(leaderboard_df))
|
| 132 |
return plot_df
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
def init_leaderboard(dataframe):
|
| 135 |
return Leaderboard(
|
| 136 |
value = dataframe,
|
|
@@ -210,6 +276,5 @@ with demo:
|
|
| 210 |
)
|
| 211 |
|
| 212 |
demo.load(fn=get_latest_data_leaderboard, inputs=[leaderboard], outputs=[leaderboard])
|
| 213 |
-
|
| 214 |
|
| 215 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 6 |
import datasets
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 9 |
+
import plotly.graph_objects as go
|
| 10 |
|
| 11 |
from src.display.about import (
|
| 12 |
CITATION_BUTTON_LABEL,
|
|
|
|
| 32 |
HF_HOME,
|
| 33 |
)
|
| 34 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 35 |
+
from src.tools.plots import create_plot_df, create_scores_df
|
| 36 |
|
| 37 |
# Configure logging
|
| 38 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 39 |
|
|
|
|
| 40 |
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
|
| 41 |
# This controls whether a full initialization should be performed.
|
| 42 |
DO_FULL_INIT = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
|
|
|
|
| 53 |
|
| 54 |
return wrapper
|
| 55 |
|
|
|
|
| 56 |
@time_diff_wrapper
|
| 57 |
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
|
| 58 |
"""Download dataset with exponential backoff retries."""
|
|
|
|
| 118 |
|
| 119 |
return leaderboard_df, eval_queue_dfs
|
| 120 |
|
| 121 |
+
# Initialize the space
|
|
|
|
|
|
|
| 122 |
leaderboard_df, eval_queue_dfs = init_space()
|
| 123 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
|
| 124 |
|
|
|
|
| 125 |
# Data processing for plots now only on demand in the respective Gradio tab
|
| 126 |
def load_and_create_plots():
|
| 127 |
plot_df = create_plot_df(create_scores_df(leaderboard_df))
|
| 128 |
return plot_df
|
| 129 |
|
| 130 |
+
def create_metric_plot_obj(df, metrics, title="Metrics Over Time"):
|
| 131 |
+
"""Create plot with Open-Orca models highlighted in purple"""
|
| 132 |
+
fig = go.Figure()
|
| 133 |
+
|
| 134 |
+
# Add traces for each metric
|
| 135 |
+
for metric in metrics:
|
| 136 |
+
# Get the model names for this metric
|
| 137 |
+
model_names = df[f"{metric}_model"].tolist()
|
| 138 |
+
|
| 139 |
+
# Create masks for Open-Orca and non-Open-Orca models
|
| 140 |
+
is_open_orca = ["Open-Orca" in str(model) for model in model_names]
|
| 141 |
+
|
| 142 |
+
# Add trace for non-Open-Orca models
|
| 143 |
+
fig.add_trace(
|
| 144 |
+
go.Scatter(
|
| 145 |
+
x=df[df.index[~is_open_orca]],
|
| 146 |
+
y=df[metric][~is_open_orca],
|
| 147 |
+
name=metric,
|
| 148 |
+
mode='lines+markers',
|
| 149 |
+
line=dict(width=2),
|
| 150 |
+
marker=dict(size=8),
|
| 151 |
+
hovertemplate=(
|
| 152 |
+
"Date: %{x}<br>"
|
| 153 |
+
"Score: %{y:.2f}<br>"
|
| 154 |
+
"Model: %{text}<br>"
|
| 155 |
+
),
|
| 156 |
+
text=[model_names[i] for i, flag in enumerate(is_open_orca) if not flag]
|
| 157 |
+
)
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Add trace for Open-Orca models with purple color and larger markers
|
| 161 |
+
if any(is_open_orca):
|
| 162 |
+
fig.add_trace(
|
| 163 |
+
go.Scatter(
|
| 164 |
+
x=df[df.index[is_open_orca]],
|
| 165 |
+
y=df[metric][is_open_orca],
|
| 166 |
+
name=f"{metric} (Open-Orca)",
|
| 167 |
+
mode='lines+markers',
|
| 168 |
+
line=dict(color='purple', width=3),
|
| 169 |
+
marker=dict(
|
| 170 |
+
color='purple',
|
| 171 |
+
size=12,
|
| 172 |
+
symbol='star'
|
| 173 |
+
),
|
| 174 |
+
hovertemplate=(
|
| 175 |
+
"Date: %{x}<br>"
|
| 176 |
+
"Score: %{y:.2f}<br>"
|
| 177 |
+
"Model: %{text}<br>"
|
| 178 |
+
),
|
| 179 |
+
text=[model_names[i] for i, flag in enumerate(is_open_orca) if flag]
|
| 180 |
+
)
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# Update layout
|
| 184 |
+
fig.update_layout(
|
| 185 |
+
title=title,
|
| 186 |
+
xaxis_title="Date",
|
| 187 |
+
yaxis_title="Score",
|
| 188 |
+
hovermode='x unified',
|
| 189 |
+
showlegend=True,
|
| 190 |
+
legend=dict(
|
| 191 |
+
yanchor="top",
|
| 192 |
+
y=0.99,
|
| 193 |
+
xanchor="left",
|
| 194 |
+
x=0.01
|
| 195 |
+
)
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
return fig
|
| 199 |
+
|
| 200 |
def init_leaderboard(dataframe):
|
| 201 |
return Leaderboard(
|
| 202 |
value = dataframe,
|
|
|
|
| 276 |
)
|
| 277 |
|
| 278 |
demo.load(fn=get_latest_data_leaderboard, inputs=[leaderboard], outputs=[leaderboard])
|
|
|
|
| 279 |
|
| 280 |
+
demo.queue(default_concurrency_limit=40).launch()
|