Spaces:
Runtime error
Runtime error
Add application file
Browse files
app.py
CHANGED
|
@@ -14,6 +14,7 @@ import re
|
|
| 14 |
import torch
|
| 15 |
import transformers
|
| 16 |
from transformers import pipeline
|
|
|
|
| 17 |
from datasets import load_dataset
|
| 18 |
import soundfile as sf
|
| 19 |
from IPython.display import Audio
|
|
@@ -144,9 +145,15 @@ def main_function(uploaded_filepath):
|
|
| 144 |
text_per_pagy[key] = cleaned_text
|
| 145 |
abstract_text = extract_abstract(text_per_pagy)
|
| 146 |
|
|
|
|
|
|
|
| 147 |
#abstract the summary with my pipeline and model, deciding the length
|
| 148 |
summarizer = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-sci-simplify")
|
| 149 |
-
summary = summarizer(abstract_text, max_length=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
#generating the audio from the text, with my pipeline and model
|
| 152 |
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
|
@@ -159,7 +166,7 @@ def main_function(uploaded_filepath):
|
|
| 159 |
sf.write(audio_file_path, speech["audio"], samplerate=speech["sampling_rate"])
|
| 160 |
|
| 161 |
#the function returns the 2 pieces we need
|
| 162 |
-
return
|
| 163 |
|
| 164 |
#let's communicate with gradio what it has to put in
|
| 165 |
iface = gr.Interface(
|
|
|
|
| 14 |
import torch
|
| 15 |
import transformers
|
| 16 |
from transformers import pipeline
|
| 17 |
+
import nltk
|
| 18 |
from datasets import load_dataset
|
| 19 |
import soundfile as sf
|
| 20 |
from IPython.display import Audio
|
|
|
|
| 145 |
text_per_pagy[key] = cleaned_text
|
| 146 |
abstract_text = extract_abstract(text_per_pagy)
|
| 147 |
|
| 148 |
+
nltk.download('punkt')
|
| 149 |
+
|
| 150 |
#abstract the summary with my pipeline and model, deciding the length
|
| 151 |
summarizer = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-sci-simplify")
|
| 152 |
+
summary = summarizer(abstract_text, max_length=100, do_sample=False)[0]['summary_text']
|
| 153 |
+
|
| 154 |
+
#keeping just the first sentence, to be sure.
|
| 155 |
+
sentences = nltk.tokenize.sent_tokenize(summary)
|
| 156 |
+
first_sentence = sentences[0]
|
| 157 |
|
| 158 |
#generating the audio from the text, with my pipeline and model
|
| 159 |
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
|
|
|
| 166 |
sf.write(audio_file_path, speech["audio"], samplerate=speech["sampling_rate"])
|
| 167 |
|
| 168 |
#the function returns the 2 pieces we need
|
| 169 |
+
return first_sentence, audio_file_path
|
| 170 |
|
| 171 |
#let's communicate with gradio what it has to put in
|
| 172 |
iface = gr.Interface(
|