Spaces:
Runtime error
Runtime error
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import transformers
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import PyPDF2
|
| 5 |
+
import pdfplumber
|
| 6 |
+
from pdfminer.high_level import extract_pages, extract_text
|
| 7 |
+
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
|
| 8 |
+
import re
|
| 9 |
+
import torch
|
| 10 |
+
from datasets import load_dataset
|
| 11 |
+
import soundfile as sf
|
| 12 |
+
from IPython.display import Audio
|
| 13 |
+
import numpy as np
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
import sentencepiece as spm
|
| 16 |
+
import os
|
| 17 |
+
import tempfile
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def text_extraction(element):
|
| 22 |
+
# Extracting the text from the in-line text element
|
| 23 |
+
line_text = element.get_text()
|
| 24 |
+
|
| 25 |
+
# Find the formats of the text
|
| 26 |
+
# Initialize the list with all the formats that appeared in the line of text
|
| 27 |
+
line_formats = []
|
| 28 |
+
for text_line in element:
|
| 29 |
+
if isinstance(text_line, LTTextContainer):
|
| 30 |
+
# Iterating through each character in the line of text
|
| 31 |
+
for character in text_line:
|
| 32 |
+
if isinstance(character, LTChar):
|
| 33 |
+
# Append the font name of the character
|
| 34 |
+
line_formats.append(character.fontname)
|
| 35 |
+
# Append the font size of the character
|
| 36 |
+
line_formats.append(character.size)
|
| 37 |
+
# Find the unique font sizes and names in the line
|
| 38 |
+
format_per_line = list(set(line_formats))
|
| 39 |
+
|
| 40 |
+
# Return a tuple with the text in each line along with its format
|
| 41 |
+
return (line_text, format_per_line)
|
| 42 |
+
|
| 43 |
+
def read_pdf(pdf_pathy):
|
| 44 |
+
# create a PDF file object
|
| 45 |
+
pdfFileObj = open(pdf_pathy, 'rb')
|
| 46 |
+
# create a PDF reader object
|
| 47 |
+
pdfReaded = PyPDF2.PdfReader(pdfFileObj)
|
| 48 |
+
|
| 49 |
+
# Create the dictionary to extract text from each image
|
| 50 |
+
text_per_pagy = {}
|
| 51 |
+
# We extract the pages from the PDF
|
| 52 |
+
for pagenum, page in enumerate(extract_pages(pdf_pathy)):
|
| 53 |
+
print("Elaborating Page_" +str(pagenum))
|
| 54 |
+
# Initialize the variables needed for the text extraction from the page
|
| 55 |
+
pageObj = pdfReaded.pages[pagenum]
|
| 56 |
+
page_text = []
|
| 57 |
+
line_format = []
|
| 58 |
+
page_content = []
|
| 59 |
+
|
| 60 |
+
# Open the pdf file
|
| 61 |
+
pdf = pdfplumber.open(pdf_pathy)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Find all the elements
|
| 65 |
+
page_elements = [(element.y1, element) for element in page._objs]
|
| 66 |
+
# Sort all the elements as they appear in the page
|
| 67 |
+
page_elements.sort(key=lambda a: a[0], reverse=True)
|
| 68 |
+
|
| 69 |
+
# Find the elements that composed a page
|
| 70 |
+
for i,component in enumerate(page_elements):
|
| 71 |
+
# Extract the position of the top side of the element in the PDF
|
| 72 |
+
pos= component[0]
|
| 73 |
+
# Extract the element of the page layout
|
| 74 |
+
element = component[1]
|
| 75 |
+
|
| 76 |
+
# Check if the element is a text element
|
| 77 |
+
if isinstance(element, LTTextContainer):
|
| 78 |
+
# Check if the text appeared in a table
|
| 79 |
+
# Use the function to extract the text and format for each text element
|
| 80 |
+
(line_text, format_per_line) = text_extraction(element)
|
| 81 |
+
# Append the text of each line to the page text
|
| 82 |
+
page_text.append(line_text)
|
| 83 |
+
# Append the format for each line containing text
|
| 84 |
+
line_format.append(format_per_line)
|
| 85 |
+
page_content.append(line_text)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# Create the key of the dictionary
|
| 89 |
+
dctkey = 'Page_'+str(pagenum)
|
| 90 |
+
# Add the list of list as the value of the page key
|
| 91 |
+
text_per_pagy[dctkey]= [page_text, line_format, page_content]
|
| 92 |
+
|
| 93 |
+
# Closing the pdf file object
|
| 94 |
+
pdfFileObj.close()
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
return text_per_pagy
|
| 98 |
+
|
| 99 |
+
#performing a cleaning of the contents
|
| 100 |
+
import re
|
| 101 |
+
|
| 102 |
+
def clean_text(text):
|
| 103 |
+
# remove extra spaces
|
| 104 |
+
text = re.sub(r'\s+', ' ', text)
|
| 105 |
+
|
| 106 |
+
return text.strip()
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def extract_abstract(text_per_pagy):
|
| 110 |
+
abstract_text = ""
|
| 111 |
+
|
| 112 |
+
#iterate through each page in the extracted text dictionary
|
| 113 |
+
for page_num, page_text in text_per_pagy.items():
|
| 114 |
+
if page_text:
|
| 115 |
+
# Replace hyphens used for line breaks
|
| 116 |
+
page_text = page_text.replace("- ", "")
|
| 117 |
+
|
| 118 |
+
# Looking for the start of the abstract
|
| 119 |
+
start_index = page_text.find("Abstract")
|
| 120 |
+
if start_index != -1:
|
| 121 |
+
# Adjust the start index to exclude the word "Abstract" itself
|
| 122 |
+
# The length of "Abstract" is 8 characters; we also add 1 to skip the space after it
|
| 123 |
+
start_index += len("Abstract") + 1
|
| 124 |
+
|
| 125 |
+
# Searching the possible end markers of the abstract
|
| 126 |
+
end_markers = ["Introduction", "Summary", "Overview", "Background"]
|
| 127 |
+
end_index = -1
|
| 128 |
+
|
| 129 |
+
for marker in end_markers:
|
| 130 |
+
temp_index = page_text.find(marker, start_index)
|
| 131 |
+
if temp_index != -1:
|
| 132 |
+
end_index = temp_index
|
| 133 |
+
break
|
| 134 |
+
|
| 135 |
+
# If no end marker found, take entire text after "Abstract"
|
| 136 |
+
if end_index == -1:
|
| 137 |
+
end_index = len(page_text)
|
| 138 |
+
|
| 139 |
+
# Extract the abstract text
|
| 140 |
+
abstract = page_text[start_index:end_index].strip()
|
| 141 |
+
|
| 142 |
+
# Add the abstract to the complete text
|
| 143 |
+
abstract_text += " " + abstract
|
| 144 |
+
|
| 145 |
+
break
|
| 146 |
+
|
| 147 |
+
return abstract_text
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def main_function(uploaded_filepath):
|
| 151 |
+
#a control to see if there is a file uploaded
|
| 152 |
+
if uploaded_filepath is None:
|
| 153 |
+
return "No file loaded", None
|
| 154 |
+
|
| 155 |
+
#read and process the file
|
| 156 |
+
text_per_pagy = read_pdf(uploaded_filepath)
|
| 157 |
+
|
| 158 |
+
#cleaning the text and getting the abstract
|
| 159 |
+
for key, value in text_per_pagy.items():
|
| 160 |
+
cleaned_text = clean_text(' '.join(value[0]))
|
| 161 |
+
text_per_pagy[key] = cleaned_text
|
| 162 |
+
abstract_text = extract_abstract(text_per_pagy)
|
| 163 |
+
|
| 164 |
+
#abstract summary
|
| 165 |
+
summarizer = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-sci-simplify")
|
| 166 |
+
summary = summarizer(abstract_text, max_length=50, min_length=30, do_sample=False)[0]['summary_text']
|
| 167 |
+
|
| 168 |
+
#generating the audio from the text, with my pipeline and model
|
| 169 |
+
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
| 170 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 171 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 172 |
+
speech = synthesiser(summary, forward_params={"speaker_embeddings": speaker_embedding})
|
| 173 |
+
|
| 174 |
+
#saving the audio in a temp file
|
| 175 |
+
audio_file_path = "summary.wav"
|
| 176 |
+
sf.write(audio_file_path, speech["audio"], samplerate=speech["sampling_rate"])
|
| 177 |
+
|
| 178 |
+
#the function returns the 2 pieces we need
|
| 179 |
+
return summary, audio_file_path
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
iface = gr.Interface(
|
| 183 |
+
fn=main_function,
|
| 184 |
+
inputs=gr.File(type="filepath"), # Cambiato da "pdf" a "file"
|
| 185 |
+
outputs=[gr.Textbox(label="Summary Text"), gr.Audio(label="Summary Audio", type="filepath")]
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# Avvia l'app
|
| 189 |
+
if __name__ == "__main__":
|
| 190 |
+
iface.launch()
|