testing deployment
Browse files
app.py
CHANGED
|
@@ -1,65 +1,47 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
"""
|
| 45 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 46 |
-
"""
|
| 47 |
-
demo = gr.ChatInterface(
|
| 48 |
-
respond,
|
| 49 |
-
additional_inputs=[
|
| 50 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 51 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 53 |
-
gr.Slider(
|
| 54 |
-
minimum=0.1,
|
| 55 |
-
maximum=1.0,
|
| 56 |
-
value=0.95,
|
| 57 |
-
step=0.05,
|
| 58 |
-
label="Top-p (nucleus sampling)",
|
| 59 |
-
),
|
| 60 |
-
],
|
| 61 |
)
|
| 62 |
-
|
| 63 |
|
| 64 |
if __name__ == "__main__":
|
| 65 |
-
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 2 |
+
from peft import PeftModel, PeftConfig
|
| 3 |
import gradio as gr
|
| 4 |
+
from huggingface_hub import login
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
hf_token = os.getenv("llama")
|
| 8 |
+
login(hf_token)
|
| 9 |
+
# Model and adapter paths
|
| 10 |
+
model_name = "unsloth/llama-3.2-1b-instruct-bnb-4bit" # Base model
|
| 11 |
+
adapter_name = "Alkhalaf/lora_model" # LoRA model adapter
|
| 12 |
+
|
| 13 |
+
# Load tokenizer
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
|
| 15 |
+
|
| 16 |
+
# Load the LoRA adapter configuration
|
| 17 |
+
peft_config = PeftConfig.from_pretrained(adapter_name, use_auth_token=True)
|
| 18 |
+
|
| 19 |
+
# Load the base model
|
| 20 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
peft_config.base_model_name_or_path,
|
| 22 |
+
|
| 23 |
+
#torch_dtype=torch.float16
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
)
|
| 27 |
+
# Apply the LoRA adapter to the base model
|
| 28 |
+
model = PeftModel.from_pretrained(base_model, adapter_name, use_auth_token=True)
|
| 29 |
+
|
| 30 |
+
# Define prediction function
|
| 31 |
+
def predict(input_text):
|
| 32 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 33 |
+
outputs = model.generate(inputs["input_ids"], max_length=150)
|
| 34 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 35 |
+
return response
|
| 36 |
+
|
| 37 |
+
# Gradio Interface
|
| 38 |
+
interface = gr.Interface(
|
| 39 |
+
fn=predict,
|
| 40 |
+
inputs="text",
|
| 41 |
+
outputs="text",
|
| 42 |
+
title="Conversational AI with LoRA",
|
| 43 |
+
description="Interact with a fine-tuned LoRA model for conversational AI."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
)
|
|
|
|
| 45 |
|
| 46 |
if __name__ == "__main__":
|
| 47 |
+
interface.launch(share=True)
|