File size: 28,938 Bytes
eac965b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
#!/usr/bin/env python3
"""
LoRA Trainer Funcional para Hugging Face
Baseado no kohya-ss sd-scripts
"""

import gradio as gr
import os
import sys
import json
import subprocess
import shutil
import zipfile
import tempfile
import toml
import logging
from pathlib import Path
from typing import Optional, Tuple, List, Dict, Any
import time
import threading
import queue

# Adicionar o diretório sd-scripts ao path
sys.path.insert(0, str(Path(__file__).parent / "sd-scripts"))

# Configurar logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class LoRATrainerHF:
    def __init__(self):
        self.base_dir = Path("/tmp/lora_training")
        self.base_dir.mkdir(exist_ok=True)
        
        self.models_dir = self.base_dir / "models"
        self.models_dir.mkdir(exist_ok=True)
        
        self.projects_dir = self.base_dir / "projects"
        self.projects_dir.mkdir(exist_ok=True)
        
        self.sd_scripts_dir = Path(__file__).parent / "sd-scripts"
        
        # URLs dos modelos
        self.model_urls = {
            "Anime (animefull-final-pruned)": "https://huggingface.co/hollowstrawberry/stable-diffusion-guide/resolve/main/models/animefull-final-pruned-fp16.safetensors",
            "AnyLoRA": "https://huggingface.co/Lykon/AnyLoRA/resolve/main/AnyLoRA_noVae_fp16-pruned.ckpt",
            "Stable Diffusion 1.5": "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors",
            "Waifu Diffusion 1.4": "https://huggingface.co/hakurei/waifu-diffusion-v1-4/resolve/main/wd-1-4-anime_e1.ckpt"
        }
        
        self.training_process = None
        self.training_output_queue = queue.Queue()
        
    def install_dependencies(self) -> str:
        """Instala as dependências necessárias"""
        try:
            logger.info("Instalando dependências...")
            
            # Lista de pacotes necessários
            packages = [
                "torch>=2.0.0",
                "torchvision>=0.15.0", 
                "diffusers>=0.21.0",
                "transformers>=4.25.0",
                "accelerate>=0.20.0",
                "safetensors>=0.3.0",
                "huggingface-hub>=0.16.0",
                "xformers>=0.0.20",
                "bitsandbytes>=0.41.0",
                "opencv-python>=4.7.0",
                "Pillow>=9.0.0",
                "numpy>=1.21.0",
                "tqdm>=4.64.0",
                "toml>=0.10.0",
                "tensorboard>=2.13.0",
                "wandb>=0.15.0",
                "scipy>=1.9.0",
                "matplotlib>=3.5.0",
                "datasets>=2.14.0",
                "peft>=0.5.0",
                "omegaconf>=2.3.0"
            ]
            
            # Instalar pacotes
            for package in packages:
                try:
                    subprocess.run([
                        sys.executable, "-m", "pip", "install", package, "--quiet"
                    ], check=True, capture_output=True, text=True)
                    logger.info(f"✓ {package} instalado")
                except subprocess.CalledProcessError as e:
                    logger.warning(f"⚠ Erro ao instalar {package}: {e}")
            
            return "✅ Dependências instaladas com sucesso!"
            
        except Exception as e:
            logger.error(f"Erro ao instalar dependências: {e}")
            return f"❌ Erro ao instalar dependências: {e}"
    
    def download_model(self, model_choice: str, custom_url: str = "") -> str:
        """Download do modelo base"""
        try:
            if custom_url.strip():
                model_url = custom_url.strip()
                model_name = model_url.split("/")[-1]
            else:
                if model_choice not in self.model_urls:
                    return f"❌ Modelo '{model_choice}' não encontrado"
                model_url = self.model_urls[model_choice]
                model_name = model_url.split("/")[-1]
            
            model_path = self.models_dir / model_name
            
            if model_path.exists():
                return f"✅ Modelo já existe: {model_name}"
            
            logger.info(f"Baixando modelo: {model_url}")
            
            # Download usando wget
            result = subprocess.run([
                "wget", "-O", str(model_path), model_url, "--progress=bar:force"
            ], capture_output=True, text=True)
            
            if result.returncode == 0:
                return f"✅ Modelo baixado: {model_name} ({model_path.stat().st_size // (1024*1024)} MB)"
            else:
                return f"❌ Erro no download: {result.stderr}"
                
        except Exception as e:
            logger.error(f"Erro ao baixar modelo: {e}")
            return f"❌ Erro ao baixar modelo: {e}"
    
    def process_dataset(self, dataset_zip, project_name: str) -> Tuple[str, str]:
        """Processa o dataset enviado"""
        try:
            if not dataset_zip:
                return "❌ Nenhum dataset foi enviado", ""
            
            if not project_name.strip():
                return "❌ Nome do projeto é obrigatório", ""
            
            project_name = project_name.strip().replace(" ", "_")
            project_dir = self.projects_dir / project_name
            project_dir.mkdir(exist_ok=True)
            
            dataset_dir = project_dir / "dataset"
            if dataset_dir.exists():
                shutil.rmtree(dataset_dir)
            dataset_dir.mkdir()
            
            # Extrair ZIP
            with zipfile.ZipFile(dataset_zip.name, 'r') as zip_ref:
                zip_ref.extractall(dataset_dir)
            
            # Analisar dataset
            image_extensions = {'.jpg', '.jpeg', '.png', '.webp', '.bmp', '.tiff'}
            images = []
            captions = []
            
            for file_path in dataset_dir.rglob("*"):
                if file_path.suffix.lower() in image_extensions:
                    images.append(file_path)
                    
                    # Procurar caption
                    caption_path = file_path.with_suffix('.txt')
                    if caption_path.exists():
                        captions.append(caption_path)
            
            info = f"✅ Dataset processado!\n"
            info += f"📁 Projeto: {project_name}\n"
            info += f"🖼️ Imagens: {len(images)}\n"
            info += f"📝 Captions: {len(captions)}\n"
            info += f"📂 Diretório: {dataset_dir}"
            
            return info, str(dataset_dir)
            
        except Exception as e:
            logger.error(f"Erro ao processar dataset: {e}")
            return f"❌ Erro ao processar dataset: {e}", ""
    
    def create_training_config(self, 
                             project_name: str,
                             dataset_dir: str,
                             model_choice: str,
                             custom_model_url: str,
                             resolution: int,
                             batch_size: int,
                             epochs: int,
                             learning_rate: float,
                             text_encoder_lr: float,
                             network_dim: int,
                             network_alpha: int,
                             lora_type: str,
                             optimizer: str,
                             scheduler: str,
                             flip_aug: bool,
                             shuffle_caption: bool,
                             keep_tokens: int,
                             clip_skip: int,
                             mixed_precision: str,
                             save_every_n_epochs: int,
                             max_train_steps: int) -> str:
        """Cria configuração de treinamento"""
        try:
            if not project_name.strip():
                return "❌ Nome do projeto é obrigatório"
            
            project_name = project_name.strip().replace(" ", "_")
            project_dir = self.projects_dir / project_name
            project_dir.mkdir(exist_ok=True)
            
            output_dir = project_dir / "output"
            output_dir.mkdir(exist_ok=True)
            
            log_dir = project_dir / "logs"
            log_dir.mkdir(exist_ok=True)
            
            # Determinar modelo
            if custom_model_url.strip():
                model_name = custom_model_url.strip().split("/")[-1]
            else:
                model_name = self.model_urls[model_choice].split("/")[-1]
            
            model_path = self.models_dir / model_name
            
            if not model_path.exists():
                return f"❌ Modelo não encontrado: {model_name}. Faça o download primeiro."
            
            # Configuração do dataset
            dataset_config = {
                "general": {
                    "shuffle_caption": shuffle_caption,
                    "caption_extension": ".txt",
                    "keep_tokens": keep_tokens,
                    "flip_aug": flip_aug,
                    "color_aug": False,
                    "face_crop_aug_range": None,
                    "random_crop": False,
                    "debug_dataset": False
                },
                "datasets": [{
                    "resolution": resolution,
                    "batch_size": batch_size,
                    "subsets": [{
                        "image_dir": str(dataset_dir),
                        "num_repeats": 1
                    }]
                }]
            }
            
            # Configuração de treinamento
            training_config = {
                "model_arguments": {
                    "pretrained_model_name_or_path": str(model_path),
                    "v2": False,
                    "v_parameterization": False,
                    "clip_skip": clip_skip
                },
                "dataset_arguments": {
                    "dataset_config": str(project_dir / "dataset_config.toml")
                },
                "training_arguments": {
                    "output_dir": str(output_dir),
                    "output_name": project_name,
                    "save_precision": "fp16",
                    "save_every_n_epochs": save_every_n_epochs,
                    "max_train_epochs": epochs if max_train_steps == 0 else None,
                    "max_train_steps": max_train_steps if max_train_steps > 0 else None,
                    "train_batch_size": batch_size,
                    "gradient_accumulation_steps": 1,
                    "learning_rate": learning_rate,
                    "text_encoder_lr": text_encoder_lr,
                    "lr_scheduler": scheduler,
                    "lr_warmup_steps": 0,
                    "optimizer_type": optimizer,
                    "mixed_precision": mixed_precision,
                    "save_model_as": "safetensors",
                    "seed": 42,
                    "max_data_loader_n_workers": 2,
                    "persistent_data_loader_workers": True,
                    "gradient_checkpointing": True,
                    "xformers": True,
                    "lowram": True,
                    "cache_latents": True,
                    "cache_latents_to_disk": True,
                    "logging_dir": str(log_dir),
                    "log_with": "tensorboard"
                },
                "network_arguments": {
                    "network_module": "networks.lora" if lora_type == "LoRA" else "networks.dylora",
                    "network_dim": network_dim,
                    "network_alpha": network_alpha,
                    "network_train_unet_only": False,
                    "network_train_text_encoder_only": False
                }
            }
            
            # Adicionar argumentos específicos para LoCon
            if lora_type == "LoCon":
                training_config["network_arguments"]["network_module"] = "networks.lora"
                training_config["network_arguments"]["conv_dim"] = max(1, network_dim // 2)
                training_config["network_arguments"]["conv_alpha"] = max(1, network_alpha // 2)
            
            # Salvar configurações
            dataset_config_path = project_dir / "dataset_config.toml"
            training_config_path = project_dir / "training_config.toml"
            
            with open(dataset_config_path, 'w') as f:
                toml.dump(dataset_config, f)
            
            with open(training_config_path, 'w') as f:
                toml.dump(training_config, f)
            
            return f"✅ Configuração criada!\n📁 Dataset: {dataset_config_path}\n⚙️ Treinamento: {training_config_path}"
            
        except Exception as e:
            logger.error(f"Erro ao criar configuração: {e}")
            return f"❌ Erro ao criar configuração: {e}"
    
    def start_training(self, project_name: str) -> str:
        """Inicia o treinamento"""
        try:
            if not project_name.strip():
                return "❌ Nome do projeto é obrigatório"
            
            project_name = project_name.strip().replace(" ", "_")
            project_dir = self.projects_dir / project_name
            
            training_config_path = project_dir / "training_config.toml"
            if not training_config_path.exists():
                return "❌ Configuração não encontrada. Crie a configuração primeiro."
            
            # Script de treinamento
            train_script = self.sd_scripts_dir / "train_network.py"
            if not train_script.exists():
                return "❌ Script de treinamento não encontrado"
            
            # Comando de treinamento
            cmd = [
                sys.executable,
                str(train_script),
                "--config_file", str(training_config_path)
            ]
            
            logger.info(f"Iniciando treinamento: {' '.join(cmd)}")
            
            # Executar em thread separada
            def run_training():
                try:
                    process = subprocess.Popen(
                        cmd,
                        stdout=subprocess.PIPE,
                        stderr=subprocess.STDOUT,
                        text=True,
                        bufsize=1,
                        universal_newlines=True,
                        cwd=str(self.sd_scripts_dir)
                    )
                    
                    self.training_process = process
                    
                    for line in process.stdout:
                        self.training_output_queue.put(line.strip())
                        logger.info(line.strip())
                    
                    process.wait()
                    
                    if process.returncode == 0:
                        self.training_output_queue.put("✅ TREINAMENTO CONCLUÍDO COM SUCESSO!")
                    else:
                        self.training_output_queue.put(f"❌ TREINAMENTO FALHOU (código {process.returncode})")
                    
                except Exception as e:
                    self.training_output_queue.put(f"❌ ERRO NO TREINAMENTO: {e}")
                finally:
                    self.training_process = None
            
            # Iniciar thread
            training_thread = threading.Thread(target=run_training)
            training_thread.daemon = True
            training_thread.start()
            
            return "🚀 Treinamento iniciado! Acompanhe o progresso abaixo."
            
        except Exception as e:
            logger.error(f"Erro ao iniciar treinamento: {e}")
            return f"❌ Erro ao iniciar treinamento: {e}"
    
    def get_training_output(self) -> str:
        """Obtém output do treinamento"""
        output_lines = []
        try:
            while not self.training_output_queue.empty():
                line = self.training_output_queue.get_nowait()
                output_lines.append(line)
        except queue.Empty:
            pass
        
        if output_lines:
            return "\n".join(output_lines)
        elif self.training_process and self.training_process.poll() is None:
            return "🔄 Treinamento em andamento..."
        else:
            return "⏸️ Nenhum treinamento ativo"
    
    def stop_training(self) -> str:
        """Para o treinamento"""
        try:
            if self.training_process and self.training_process.poll() is None:
                self.training_process.terminate()
                self.training_process.wait(timeout=10)
                return "⏹️ Treinamento interrompido"
            else:
                return "ℹ️ Nenhum treinamento ativo para parar"
        except Exception as e:
            return f"❌ Erro ao parar treinamento: {e}"
    
    def list_output_files(self, project_name: str) -> List[str]:
        """Lista arquivos de saída"""
        try:
            if not project_name.strip():
                return []
            
            project_name = project_name.strip().replace(" ", "_")
            project_dir = self.projects_dir / project_name
            output_dir = project_dir / "output"
            
            if not output_dir.exists():
                return []
            
            files = []
            for file_path in output_dir.rglob("*.safetensors"):
                size_mb = file_path.stat().st_size // (1024 * 1024)
                files.append(f"{file_path.name} ({size_mb} MB)")
            
            return sorted(files, reverse=True)  # Mais recentes primeiro
            
        except Exception as e:
            logger.error(f"Erro ao listar arquivos: {e}")
            return []

# Instância global
trainer = LoRATrainerHF()

def create_interface():
    """Cria a interface Gradio"""
    
    with gr.Blocks(title="LoRA Trainer Funcional - Hugging Face", theme=gr.themes.Soft()) as interface:
        
        gr.Markdown("""
        # 🎨 LoRA Trainer Funcional para Hugging Face
        
        **Treine seus próprios modelos LoRA para Stable Diffusion de forma profissional!**
        
        Esta ferramenta é baseada no kohya-ss sd-scripts e oferece treinamento real e funcional de modelos LoRA.
        """)
        
        # Estado para armazenar informações
        dataset_dir_state = gr.State("")
        
        with gr.Tab("🔧 Instalação"):
            gr.Markdown("### Primeiro, instale as dependências necessárias:")
            install_btn = gr.Button("📦 Instalar Dependências", variant="primary", size="lg")
            install_status = gr.Textbox(label="Status da Instalação", lines=3, interactive=False)
            
            install_btn.click(
                fn=trainer.install_dependencies,
                outputs=install_status
            )
        
        with gr.Tab("📁 Configuração do Projeto"):
            with gr.Row():
                project_name = gr.Textbox(
                    label="Nome do Projeto",
                    placeholder="meu_lora_anime",
                    info="Nome único para seu projeto (sem espaços especiais)"
                )
            
            gr.Markdown("### 📥 Download do Modelo Base")
            with gr.Row():
                model_choice = gr.Dropdown(
                    choices=list(trainer.model_urls.keys()),
                    label="Modelo Base Pré-definido",
                    value="Anime (animefull-final-pruned)",
                    info="Escolha um modelo base ou use URL personalizada"
                )
                custom_model_url = gr.Textbox(
                    label="URL Personalizada (opcional)",
                    placeholder="https://huggingface.co/...",
                    info="URL direta para download de modelo personalizado"
                )
            
            download_btn = gr.Button("📥 Baixar Modelo", variant="primary")
            download_status = gr.Textbox(label="Status do Download", lines=2, interactive=False)
            
            gr.Markdown("### 📊 Upload do Dataset")
            gr.Markdown("""
            **Formato do Dataset:**
            - Crie um arquivo ZIP contendo suas imagens
            - Para cada imagem, inclua um arquivo .txt com o mesmo nome contendo as tags/descrições
            - Exemplo: `imagem1.jpg` + `imagem1.txt`
            """)
            
            dataset_upload = gr.File(
                label="Upload do Dataset (ZIP)",
                file_types=[".zip"]
            )
            
            process_btn = gr.Button("📊 Processar Dataset", variant="primary")
            dataset_status = gr.Textbox(label="Status do Dataset", lines=4, interactive=False)
        
        with gr.Tab("⚙️ Parâmetros de Treinamento"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("#### 🖼️ Configurações de Imagem")
                    resolution = gr.Slider(
                        minimum=512, maximum=1024, step=64, value=512,
                        label="Resolução",
                        info="Resolução das imagens (512 = mais rápido, 1024 = melhor qualidade)"
                    )
                    batch_size = gr.Slider(
                        minimum=1, maximum=8, step=1, value=1,
                        label="Batch Size",
                        info="Imagens por lote (aumente se tiver GPU potente)"
                    )
                    flip_aug = gr.Checkbox(
                        label="Flip Augmentation",
                        info="Espelhar imagens para aumentar dataset"
                    )
                    shuffle_caption = gr.Checkbox(
                        value=True,
                        label="Shuffle Caption",
                        info="Embaralhar ordem das tags"
                    )
                    keep_tokens = gr.Slider(
                        minimum=0, maximum=5, step=1, value=1,
                        label="Keep Tokens",
                        info="Número de tokens iniciais que não serão embaralhados"
                    )
                
                with gr.Column():
                    gr.Markdown("#### 🎯 Configurações de Treinamento")
                    epochs = gr.Slider(
                        minimum=1, maximum=100, step=1, value=10,
                        label="Épocas",
                        info="Número de épocas de treinamento"
                    )
                    max_train_steps = gr.Number(
                        value=0,
                        label="Max Train Steps (0 = usar épocas)",
                        info="Número máximo de steps (deixe 0 para usar épocas)"
                    )
                    save_every_n_epochs = gr.Slider(
                        minimum=1, maximum=10, step=1, value=1,
                        label="Salvar a cada N épocas",
                        info="Frequência de salvamento dos checkpoints"
                    )
                    mixed_precision = gr.Dropdown(
                        choices=["fp16", "bf16", "no"],
                        value="fp16",
                        label="Mixed Precision",
                        info="fp16 = mais rápido, bf16 = mais estável"
                    )
                    clip_skip = gr.Slider(
                        minimum=1, maximum=12, step=1, value=2,
                        label="CLIP Skip",
                        info="Camadas CLIP a pular (2 para anime, 1 para realista)"
                    )
            
            with gr.Row():
                with gr.Column():
                    gr.Markdown("#### 📚 Learning Rate")
                    learning_rate = gr.Number(
                        value=1e-4,
                        label="Learning Rate (UNet)",
                        info="Taxa de aprendizado principal"
                    )
                    text_encoder_lr = gr.Number(
                        value=5e-5,
                        label="Learning Rate (Text Encoder)",
                        info="Taxa de aprendizado do text encoder"
                    )
                    scheduler = gr.Dropdown(
                        choices=["cosine", "cosine_with_restarts", "constant", "constant_with_warmup", "linear"],
                        value="cosine_with_restarts",
                        label="LR Scheduler",
                        info="Algoritmo de ajuste da learning rate"
                    )
                    optimizer = gr.Dropdown(
                        choices=["AdamW8bit", "AdamW", "Lion", "SGD"],
                        value="AdamW8bit",
                        label="Otimizador",
                        info="AdamW8bit = menos memória"
                    )
                
                with gr.Column():
                    gr.Markdown("#### 🧠 Arquitetura LoRA")
                    lora_type = gr.Radio(
                        choices=["LoRA", "LoCon"],
                        value="LoRA",
                        label="Tipo de LoRA",
                        info="LoRA = geral, LoCon = estilos artísticos"
                    )
                    network_dim = gr.Slider(
                        minimum=4, maximum=128, step=4, value=32,
                        label="Network Dimension",
                        info="Dimensão da rede (maior = mais detalhes, mais memória)"
                    )
                    network_alpha = gr.Slider(
                        minimum=1, maximum=128, step=1, value=16,
                        label="Network Alpha",
                        info="Controla a força do LoRA (geralmente dim/2)"
                    )
        
        with gr.Tab("🚀 Treinamento"):
            create_config_btn = gr.Button("📝 Criar Configuração de Treinamento", variant="primary", size="lg")
            config_status = gr.Textbox(label="Status da Configuração", lines=3, interactive=False)
            
            with gr.Row():
                start_training_btn = gr.Button("🎯 Iniciar Treinamento", variant="primary", size="lg")
                stop_training_btn = gr.Button("⏹️ Parar Treinamento", variant="stop")
            
            training_output = gr.Textbox(
                label="Output do Treinamento",
                lines=15,
                interactive=False,
                info="Acompanhe o progresso do treinamento em tempo real"
            )
            
            # Auto-refresh do output
            def update_output():
                return trainer.get_training_output()
        
        with gr.Tab("📥 Download dos Resultados"):
            refresh_files_btn = gr.Button("🔄 Atualizar Lista de Arquivos", variant="secondary")
            
            output_files = gr.Dropdown(
                label="Arquivos LoRA Gerados",
                choices=[],
                info="Selecione um arquivo para download"
            )
            
            download_info = gr.Markdown("ℹ️ Os arquivos LoRA estarão disponíveis após o treinamento")
        
        # Event handlers
        download_btn.click(
            fn=trainer.download_model,
            inputs=[model_choice, custom_model_url],
            outputs=download_status
        )
        
        process_btn.click(
            fn=trainer.process_dataset,
            inputs=[dataset_upload, project_name],
            outputs=[dataset_status, dataset_dir_state]
        )
        
        create_config_btn.click(
            fn=trainer.create_training_config,
            inputs=[
                project_name, dataset_dir_state, model_choice, custom_model_url,
                resolution, batch_size, epochs, learning_rate, text_encoder_lr,
                network_dim, network_alpha, lora_type, optimizer, scheduler,
                flip_aug, shuffle_caption, keep_tokens, clip_skip, mixed_precision,
                save_every_n_epochs, max_train_steps
            ],
            outputs=config_status
        )
        
        start_training_btn.click(
            fn=trainer.start_training,
            inputs=project_name,
            outputs=training_output
        )
        
        stop_training_btn.click(
            fn=trainer.stop_training,
            outputs=training_output
        )
        
        refresh_files_btn.click(
            fn=trainer.list_output_files,
            inputs=project_name,
            outputs=output_files
        )
    
    return interface

if __name__ == "__main__":
    print("🚀 Iniciando LoRA Trainer Funcional...")
    interface = create_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )