TrainL / train_controlnet.py
Allex21's picture
Upload 24 files
eac965b verified
raw
history blame
26.1 kB
import argparse
import json
import math
import os
import random
import time
from multiprocessing import Value
# from omegaconf import OmegaConf
import toml
from tqdm import tqdm
import torch
from library import deepspeed_utils
from library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from torch.nn.parallel import DistributedDataParallel as DDP
from accelerate.utils import set_seed
from diffusers import DDPMScheduler, ControlNetModel
from safetensors.torch import load_file
import library.model_util as model_util
import library.train_util as train_util
import library.config_util as config_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
import library.huggingface_util as huggingface_util
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import (
apply_snr_weight,
pyramid_noise_like,
apply_noise_offset,
)
from library.utils import setup_logging, add_logging_arguments
setup_logging()
import logging
logger = logging.getLogger(__name__)
# TODO 他のスクリプトと共通化する
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler):
logs = {
"loss/current": current_loss,
"loss/average": avr_loss,
"lr": lr_scheduler.get_last_lr()[0],
}
if args.optimizer_type.lower().startswith("DAdapt".lower()):
logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"]
return logs
def train(args):
# session_id = random.randint(0, 2**32)
# training_started_at = time.time()
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
setup_logging(args, reset=True)
cache_latents = args.cache_latents
use_user_config = args.dataset_config is not None
if args.seed is None:
args.seed = random.randint(0, 2**32)
set_seed(args.seed)
tokenizer = train_util.load_tokenizer(args)
# データセットを準備する
blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, False, True, True))
if use_user_config:
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "conditioning_data_dir"]
if any(getattr(args, attr) is not None for attr in ignored):
logger.warning(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
user_config = {
"datasets": [
{
"subsets": config_util.generate_controlnet_subsets_config_by_subdirs(
args.train_data_dir,
args.conditioning_data_dir,
args.caption_extension,
)
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
train_dataset_group.verify_bucket_reso_steps(64)
if args.debug_dataset:
train_util.debug_dataset(train_dataset_group)
return
if len(train_dataset_group) == 0:
logger.error(
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)"
)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
# acceleratorを準備する
logger.info("prepare accelerator")
accelerator = train_util.prepare_accelerator(args)
is_main_process = accelerator.is_main_process
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
text_encoder, vae, unet, _ = train_util.load_target_model(
args, weight_dtype, accelerator, unet_use_linear_projection_in_v2=True
)
# DiffusersのControlNetが使用するデータを準備する
if args.v2:
unet.config = {
"act_fn": "silu",
"attention_head_dim": [5, 10, 20, 20],
"block_out_channels": [320, 640, 1280, 1280],
"center_input_sample": False,
"cross_attention_dim": 1024,
"down_block_types": ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"],
"downsample_padding": 1,
"dual_cross_attention": False,
"flip_sin_to_cos": True,
"freq_shift": 0,
"in_channels": 4,
"layers_per_block": 2,
"mid_block_scale_factor": 1,
"mid_block_type": "UNetMidBlock2DCrossAttn",
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_attention_heads": [5, 10, 20, 20],
"num_class_embeds": None,
"only_cross_attention": False,
"out_channels": 4,
"sample_size": 96,
"up_block_types": ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"],
"use_linear_projection": True,
"upcast_attention": True,
"only_cross_attention": False,
"downsample_padding": 1,
"use_linear_projection": True,
"class_embed_type": None,
"num_class_embeds": None,
"resnet_time_scale_shift": "default",
"projection_class_embeddings_input_dim": None,
}
else:
unet.config = {
"act_fn": "silu",
"attention_head_dim": 8,
"block_out_channels": [320, 640, 1280, 1280],
"center_input_sample": False,
"cross_attention_dim": 768,
"down_block_types": ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"],
"downsample_padding": 1,
"flip_sin_to_cos": True,
"freq_shift": 0,
"in_channels": 4,
"layers_per_block": 2,
"mid_block_scale_factor": 1,
"mid_block_type": "UNetMidBlock2DCrossAttn",
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_attention_heads": 8,
"out_channels": 4,
"sample_size": 64,
"up_block_types": ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"],
"only_cross_attention": False,
"downsample_padding": 1,
"use_linear_projection": False,
"class_embed_type": None,
"num_class_embeds": None,
"upcast_attention": False,
"resnet_time_scale_shift": "default",
"projection_class_embeddings_input_dim": None,
}
# unet.config = OmegaConf.create(unet.config)
# make unet.config iterable and accessible by attribute
class CustomConfig:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def __getattr__(self, name):
if name in self.__dict__:
return self.__dict__[name]
else:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'")
def __contains__(self, name):
return name in self.__dict__
unet.config = CustomConfig(**unet.config)
controlnet = ControlNetModel.from_unet(unet)
if args.controlnet_model_name_or_path:
filename = args.controlnet_model_name_or_path
if os.path.isfile(filename):
if os.path.splitext(filename)[1] == ".safetensors":
state_dict = load_file(filename)
else:
state_dict = torch.load(filename)
state_dict = model_util.convert_controlnet_state_dict_to_diffusers(state_dict)
controlnet.load_state_dict(state_dict)
elif os.path.isdir(filename):
controlnet = ControlNetModel.from_pretrained(filename)
# モデルに xformers とか memory efficient attention を組み込む
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset_group.cache_latents(
vae,
args.vae_batch_size,
args.cache_latents_to_disk,
accelerator.is_main_process,
)
vae.to("cpu")
clean_memory_on_device(accelerator.device)
accelerator.wait_for_everyone()
if args.gradient_checkpointing:
controlnet.enable_gradient_checkpointing()
# 学習に必要なクラスを準備する
accelerator.print("prepare optimizer, data loader etc.")
trainable_params = list(controlnet.parameters())
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
# dataloaderを準備する
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
accelerator.print(
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
)
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr schedulerを用意する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
accelerator.print("enable full fp16 training.")
controlnet.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
controlnet, optimizer, train_dataloader, lr_scheduler
)
unet.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.to(accelerator.device)
text_encoder.to(accelerator.device)
# transform DDP after prepare
controlnet = controlnet.module if isinstance(controlnet, DDP) else controlnet
controlnet.train()
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
# TODO: find a way to handle total batch size when there are multiple datasets
accelerator.print("running training / 学習開始")
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
accelerator.print(
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
)
# logger.info(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(
range(args.max_train_steps),
smoothing=0,
disable=not accelerator.is_local_main_process,
desc="steps",
)
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
)
if accelerator.is_main_process:
init_kwargs = {}
if args.wandb_run_name:
init_kwargs["wandb"] = {"name": args.wandb_run_name}
if args.log_tracker_config is not None:
init_kwargs = toml.load(args.log_tracker_config)
accelerator.init_trackers(
"controlnet_train" if args.log_tracker_name is None else args.log_tracker_name,
config=train_util.get_sanitized_config_or_none(args),
init_kwargs=init_kwargs,
)
loss_recorder = train_util.LossRecorder()
del train_dataset_group
# function for saving/removing
def save_model(ckpt_name, model, force_sync_upload=False):
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, ckpt_name)
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
state_dict = model_util.convert_controlnet_state_dict_to_sd(model.state_dict())
if save_dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(save_dtype)
state_dict[key] = v
if os.path.splitext(ckpt_file)[1] == ".safetensors":
from safetensors.torch import save_file
save_file(state_dict, ckpt_file)
else:
torch.save(state_dict, ckpt_file)
if args.huggingface_repo_id is not None:
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
def remove_model(old_ckpt_name):
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
# For --sample_at_first
train_util.sample_images(
accelerator, args, 0, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, controlnet=controlnet
)
# training loop
for epoch in range(num_train_epochs):
if is_main_process:
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
for step, batch in enumerate(train_dataloader):
current_step.value = global_step
with accelerator.accumulate(controlnet):
with torch.no_grad():
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
else:
# latentに変換
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
input_ids = batch["input_ids"].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
if args.noise_offset:
noise = apply_noise_offset(latents, noise, args.noise_offset, args.adaptive_noise_scale)
elif args.multires_noise_iterations:
noise = pyramid_noise_like(
noise,
latents.device,
args.multires_noise_iterations,
args.multires_noise_discount,
)
# Sample a random timestep for each image
timesteps, huber_c = train_util.get_timesteps_and_huber_c(
args, 0, noise_scheduler.config.num_train_timesteps, noise_scheduler, b_size, latents.device
)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
controlnet_image = batch["conditioning_images"].to(dtype=weight_dtype)
with accelerator.autocast():
down_block_res_samples, mid_block_res_sample = controlnet(
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=controlnet_image,
return_dict=False,
)
# Predict the noise residual
noise_pred = unet(
noisy_latents,
timesteps,
encoder_hidden_states,
down_block_additional_residuals=[sample.to(dtype=weight_dtype) for sample in down_block_res_samples],
mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype),
).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
loss = train_util.conditional_loss(
noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c
)
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = controlnet.parameters()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
train_util.sample_images(
accelerator,
args,
None,
global_step,
accelerator.device,
vae,
tokenizer,
text_encoder,
unet,
controlnet=controlnet,
)
# 指定ステップごとにモデルを保存
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step)
save_model(
ckpt_name,
accelerator.unwrap_model(controlnet),
)
if args.save_state:
train_util.save_and_remove_state_stepwise(args, accelerator, global_step)
remove_step_no = train_util.get_remove_step_no(args, global_step)
if remove_step_no is not None:
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no)
remove_model(remove_ckpt_name)
current_loss = loss.detach().item()
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
avr_loss: float = loss_recorder.moving_average
logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if args.logging_dir is not None:
logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"loss/epoch": loss_recorder.moving_average}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
# 指定エポックごとにモデルを保存
if args.save_every_n_epochs is not None:
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
if is_main_process and saving:
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1)
save_model(ckpt_name, accelerator.unwrap_model(controlnet))
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1)
if remove_epoch_no is not None:
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no)
remove_model(remove_ckpt_name)
if args.save_state:
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
train_util.sample_images(
accelerator,
args,
epoch + 1,
global_step,
accelerator.device,
vae,
tokenizer,
text_encoder,
unet,
controlnet=controlnet,
)
# end of epoch
if is_main_process:
controlnet = accelerator.unwrap_model(controlnet)
accelerator.end_training()
if is_main_process and (args.save_state or args.save_state_on_train_end):
train_util.save_state_on_train_end(args, accelerator)
# del accelerator # この後メモリを使うのでこれは消す→printで使うので消さずにおく
if is_main_process:
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as)
save_model(ckpt_name, controlnet, force_sync_upload=True)
logger.info("model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
add_logging_arguments(parser)
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, False, True, True)
train_util.add_training_arguments(parser, False)
deepspeed_utils.add_deepspeed_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)
parser.add_argument(
"--save_model_as",
type=str,
default="safetensors",
choices=[None, "ckpt", "pt", "safetensors"],
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)",
)
parser.add_argument(
"--controlnet_model_name_or_path",
type=str,
default=None,
help="controlnet model name or path / controlnetのモデル名またはパス",
)
parser.add_argument(
"--conditioning_data_dir",
type=str,
default=None,
help="conditioning data directory / 条件付けデータのディレクトリ",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
train_util.verify_command_line_training_args(args)
args = train_util.read_config_from_file(args, parser)
train(args)