Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # -------------------------------------------------------- | |
| # References: | |
| # GLIDE: https://github.com/openai/glide-text2im | |
| # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py | |
| # -------------------------------------------------------- | |
| import math | |
| from typing import List, Optional, Tuple | |
| from flash_attn import flash_attn_varlen_func | |
| from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from .components import RMSNorm | |
| def modulate(x, scale): | |
| return x * (1 + scale.unsqueeze(1)) | |
| ############################################################################# | |
| # Embedding Layers for Timesteps and Class Labels # | |
| ############################################################################# | |
| class TimestepEmbedder(nn.Module): | |
| """ | |
| Embeds scalar timesteps into vector representations. | |
| """ | |
| def __init__(self, hidden_size, frequency_embedding_size=256): | |
| super().__init__() | |
| self.mlp = nn.Sequential( | |
| nn.Linear( | |
| frequency_embedding_size, | |
| hidden_size, | |
| bias=True, | |
| ), | |
| nn.SiLU(), | |
| nn.Linear( | |
| hidden_size, | |
| hidden_size, | |
| bias=True, | |
| ), | |
| ) | |
| nn.init.normal_(self.mlp[0].weight, std=0.02) | |
| nn.init.zeros_(self.mlp[0].bias) | |
| nn.init.normal_(self.mlp[2].weight, std=0.02) | |
| nn.init.zeros_(self.mlp[2].bias) | |
| self.frequency_embedding_size = frequency_embedding_size | |
| def timestep_embedding(t, dim, max_period=10000): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param t: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an (N, D) Tensor of positional embeddings. | |
| """ | |
| # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
| half = dim // 2 | |
| freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( | |
| device=t.device | |
| ) | |
| args = t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |
| def forward(self, t): | |
| t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
| t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype)) | |
| return t_emb | |
| ############################################################################# | |
| # Core NextDiT Model # | |
| ############################################################################# | |
| class JointAttention(nn.Module): | |
| """Multi-head attention module.""" | |
| def __init__( | |
| self, | |
| dim: int, | |
| n_heads: int, | |
| n_kv_heads: Optional[int], | |
| qk_norm: bool, | |
| ): | |
| """ | |
| Initialize the Attention module. | |
| Args: | |
| dim (int): Number of input dimensions. | |
| n_heads (int): Number of heads. | |
| n_kv_heads (Optional[int]): Number of kv heads, if using GQA. | |
| """ | |
| super().__init__() | |
| self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads | |
| self.n_local_heads = n_heads | |
| self.n_local_kv_heads = self.n_kv_heads | |
| self.n_rep = self.n_local_heads // self.n_local_kv_heads | |
| self.head_dim = dim // n_heads | |
| self.qkv = nn.Linear( | |
| dim, | |
| (n_heads + self.n_kv_heads + self.n_kv_heads) * self.head_dim, | |
| bias=False, | |
| ) | |
| nn.init.xavier_uniform_(self.qkv.weight) | |
| self.out = nn.Linear( | |
| n_heads * self.head_dim, | |
| dim, | |
| bias=False, | |
| ) | |
| nn.init.xavier_uniform_(self.out.weight) | |
| if qk_norm: | |
| self.q_norm = RMSNorm(self.head_dim) | |
| self.k_norm = RMSNorm(self.head_dim) | |
| else: | |
| self.q_norm = self.k_norm = nn.Identity() | |
| def apply_rotary_emb( | |
| x_in: torch.Tensor, | |
| freqs_cis: torch.Tensor, | |
| ) -> torch.Tensor: | |
| """ | |
| Apply rotary embeddings to input tensors using the given frequency | |
| tensor. | |
| This function applies rotary embeddings to the given query 'xq' and | |
| key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The | |
| input tensors are reshaped as complex numbers, and the frequency tensor | |
| is reshaped for broadcasting compatibility. The resulting tensors | |
| contain rotary embeddings and are returned as real tensors. | |
| Args: | |
| x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings. | |
| freqs_cis (torch.Tensor): Precomputed frequency tensor for complex | |
| exponentials. | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor | |
| and key tensor with rotary embeddings. | |
| """ | |
| with torch.cuda.amp.autocast(enabled=False): | |
| x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2)) | |
| freqs_cis = freqs_cis.unsqueeze(2) | |
| x_out = torch.view_as_real(x * freqs_cis).flatten(3) | |
| return x_out.type_as(x_in) | |
| # copied from huggingface modeling_llama.py | |
| def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
| def _get_unpad_data(attention_mask): | |
| seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
| indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
| max_seqlen_in_batch = seqlens_in_batch.max().item() | |
| cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
| return ( | |
| indices, | |
| cu_seqlens, | |
| max_seqlen_in_batch, | |
| ) | |
| indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
| batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
| key_layer = index_first_axis( | |
| key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | |
| indices_k, | |
| ) | |
| value_layer = index_first_axis( | |
| value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | |
| indices_k, | |
| ) | |
| if query_length == kv_seq_len: | |
| query_layer = index_first_axis( | |
| query_layer.reshape(batch_size * kv_seq_len, self.n_local_heads, head_dim), | |
| indices_k, | |
| ) | |
| cu_seqlens_q = cu_seqlens_k | |
| max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
| indices_q = indices_k | |
| elif query_length == 1: | |
| max_seqlen_in_batch_q = 1 | |
| cu_seqlens_q = torch.arange( | |
| batch_size + 1, dtype=torch.int32, device=query_layer.device | |
| ) # There is a memcpy here, that is very bad. | |
| indices_q = cu_seqlens_q[:-1] | |
| query_layer = query_layer.squeeze(1) | |
| else: | |
| # The -q_len: slice assumes left padding. | |
| attention_mask = attention_mask[:, -query_length:] | |
| query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
| return ( | |
| query_layer, | |
| key_layer, | |
| value_layer, | |
| indices_q, | |
| (cu_seqlens_q, cu_seqlens_k), | |
| (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
| ) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| freqs_cis: torch.Tensor, | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| x: | |
| x_mask: | |
| freqs_cis: | |
| Returns: | |
| """ | |
| bsz, seqlen, _ = x.shape | |
| dtype = x.dtype | |
| xq, xk, xv = torch.split( | |
| self.qkv(x), | |
| [ | |
| self.n_local_heads * self.head_dim, | |
| self.n_local_kv_heads * self.head_dim, | |
| self.n_local_kv_heads * self.head_dim, | |
| ], | |
| dim=-1, | |
| ) | |
| xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
| xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) | |
| xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) | |
| xq = self.q_norm(xq) | |
| xk = self.k_norm(xk) | |
| xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis) | |
| xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis) | |
| xq, xk = xq.to(dtype), xk.to(dtype) | |
| softmax_scale = math.sqrt(1 / self.head_dim) | |
| if dtype in [torch.float16, torch.bfloat16]: | |
| # begin var_len flash attn | |
| ( | |
| query_states, | |
| key_states, | |
| value_states, | |
| indices_q, | |
| cu_seq_lens, | |
| max_seq_lens, | |
| ) = self._upad_input(xq, xk, xv, x_mask, seqlen) | |
| cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
| max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
| attn_output_unpad = flash_attn_varlen_func( | |
| query_states, | |
| key_states, | |
| value_states, | |
| cu_seqlens_q=cu_seqlens_q, | |
| cu_seqlens_k=cu_seqlens_k, | |
| max_seqlen_q=max_seqlen_in_batch_q, | |
| max_seqlen_k=max_seqlen_in_batch_k, | |
| dropout_p=0.0, | |
| causal=False, | |
| softmax_scale=softmax_scale, | |
| ) | |
| output = pad_input(attn_output_unpad, indices_q, bsz, seqlen) | |
| # end var_len_flash_attn | |
| else: | |
| n_rep = self.n_local_heads // self.n_local_kv_heads | |
| if n_rep >= 1: | |
| xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) | |
| xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) | |
| output = ( | |
| F.scaled_dot_product_attention( | |
| xq.permute(0, 2, 1, 3), | |
| xk.permute(0, 2, 1, 3), | |
| xv.permute(0, 2, 1, 3), | |
| attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_local_heads, seqlen, -1), | |
| scale=softmax_scale, | |
| ) | |
| .permute(0, 2, 1, 3) | |
| .to(dtype) | |
| ) | |
| output = output.flatten(-2) | |
| return self.out(output) | |
| class FeedForward(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| hidden_dim: int, | |
| multiple_of: int, | |
| ffn_dim_multiplier: Optional[float], | |
| ): | |
| """ | |
| Initialize the FeedForward module. | |
| Args: | |
| dim (int): Input dimension. | |
| hidden_dim (int): Hidden dimension of the feedforward layer. | |
| multiple_of (int): Value to ensure hidden dimension is a multiple | |
| of this value. | |
| ffn_dim_multiplier (float, optional): Custom multiplier for hidden | |
| dimension. Defaults to None. | |
| """ | |
| super().__init__() | |
| # custom dim factor multiplier | |
| if ffn_dim_multiplier is not None: | |
| hidden_dim = int(ffn_dim_multiplier * hidden_dim) | |
| hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
| self.w1 = nn.Linear( | |
| dim, | |
| hidden_dim, | |
| bias=False, | |
| ) | |
| nn.init.xavier_uniform_(self.w1.weight) | |
| self.w2 = nn.Linear( | |
| hidden_dim, | |
| dim, | |
| bias=False, | |
| ) | |
| nn.init.xavier_uniform_(self.w2.weight) | |
| self.w3 = nn.Linear( | |
| dim, | |
| hidden_dim, | |
| bias=False, | |
| ) | |
| nn.init.xavier_uniform_(self.w3.weight) | |
| # @torch.compile | |
| def _forward_silu_gating(self, x1, x3): | |
| return F.silu(x1) * x3 | |
| def forward(self, x): | |
| return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x))) | |
| class JointTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| layer_id: int, | |
| dim: int, | |
| n_heads: int, | |
| n_kv_heads: int, | |
| multiple_of: int, | |
| ffn_dim_multiplier: float, | |
| norm_eps: float, | |
| qk_norm: bool, | |
| modulation=True | |
| ) -> None: | |
| """ | |
| Initialize a TransformerBlock. | |
| Args: | |
| layer_id (int): Identifier for the layer. | |
| dim (int): Embedding dimension of the input features. | |
| n_heads (int): Number of attention heads. | |
| n_kv_heads (Optional[int]): Number of attention heads in key and | |
| value features (if using GQA), or set to None for the same as | |
| query. | |
| multiple_of (int): | |
| ffn_dim_multiplier (float): | |
| norm_eps (float): | |
| """ | |
| super().__init__() | |
| self.dim = dim | |
| self.head_dim = dim // n_heads | |
| self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm) | |
| self.feed_forward = FeedForward( | |
| dim=dim, | |
| hidden_dim=4 * dim, | |
| multiple_of=multiple_of, | |
| ffn_dim_multiplier=ffn_dim_multiplier, | |
| ) | |
| self.layer_id = layer_id | |
| self.attention_norm1 = RMSNorm(dim, eps=norm_eps) | |
| self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) | |
| self.attention_norm2 = RMSNorm(dim, eps=norm_eps) | |
| self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) | |
| self.modulation = modulation | |
| if modulation: | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear( | |
| min(dim, 1024), | |
| 4 * dim, | |
| bias=True, | |
| ), | |
| ) | |
| nn.init.zeros_(self.adaLN_modulation[1].weight) | |
| nn.init.zeros_(self.adaLN_modulation[1].bias) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| freqs_cis: torch.Tensor, | |
| adaln_input: Optional[torch.Tensor]=None, | |
| ): | |
| """ | |
| Perform a forward pass through the TransformerBlock. | |
| Args: | |
| x (torch.Tensor): Input tensor. | |
| freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. | |
| Returns: | |
| torch.Tensor: Output tensor after applying attention and | |
| feedforward layers. | |
| """ | |
| if self.modulation: | |
| assert adaln_input is not None | |
| scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) | |
| x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2( | |
| self.attention( | |
| modulate(self.attention_norm1(x), scale_msa), | |
| x_mask, | |
| freqs_cis, | |
| ) | |
| ) | |
| x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2( | |
| self.feed_forward( | |
| modulate(self.ffn_norm1(x), scale_mlp), | |
| ) | |
| ) | |
| else: | |
| assert adaln_input is None | |
| x = x + self.attention_norm2( | |
| self.attention( | |
| self.attention_norm1(x), | |
| x_mask, | |
| freqs_cis, | |
| ) | |
| ) | |
| x = x + self.ffn_norm2( | |
| self.feed_forward( | |
| self.ffn_norm1(x), | |
| ) | |
| ) | |
| return x | |
| class FinalLayer(nn.Module): | |
| """ | |
| The final layer of NextDiT. | |
| """ | |
| def __init__(self, hidden_size, patch_size, out_channels): | |
| super().__init__() | |
| self.norm_final = nn.LayerNorm( | |
| hidden_size, | |
| elementwise_affine=False, | |
| eps=1e-6, | |
| ) | |
| self.linear = nn.Linear( | |
| hidden_size, | |
| patch_size * patch_size * out_channels, | |
| bias=True, | |
| ) | |
| nn.init.zeros_(self.linear.weight) | |
| nn.init.zeros_(self.linear.bias) | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear( | |
| min(hidden_size, 1024), | |
| hidden_size, | |
| bias=True, | |
| ), | |
| ) | |
| nn.init.zeros_(self.adaLN_modulation[1].weight) | |
| nn.init.zeros_(self.adaLN_modulation[1].bias) | |
| def forward(self, x, c): | |
| scale = self.adaLN_modulation(c) | |
| x = modulate(self.norm_final(x), scale) | |
| x = self.linear(x) | |
| return x | |
| class RopeEmbedder: | |
| def __init__( | |
| self, theta: float = 10000.0, axes_dims: List[int] = (16, 56, 56), axes_lens: List[int] = (1, 512, 512) | |
| ): | |
| super().__init__() | |
| self.theta = theta | |
| self.axes_dims = axes_dims | |
| self.axes_lens = axes_lens | |
| self.freqs_cis = NextDiT.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta) | |
| def __call__(self, ids: torch.Tensor): | |
| self.freqs_cis = [freqs_cis.to(ids.device) for freqs_cis in self.freqs_cis] | |
| result = [] | |
| for i in range(len(self.axes_dims)): | |
| # import torch.distributed as dist | |
| # if not dist.is_initialized() or dist.get_rank() == 0: | |
| # import pdb | |
| # pdb.set_trace() | |
| index = ids[:, :, i:i+1].repeat(1, 1, self.freqs_cis[i].shape[-1]).to(torch.int64) | |
| result.append(torch.gather(self.freqs_cis[i].unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index)) | |
| return torch.cat(result, dim=-1) | |
| class NextDiT(nn.Module): | |
| """ | |
| Diffusion model with a Transformer backbone. | |
| """ | |
| def __init__( | |
| self, | |
| patch_size: int = 2, | |
| in_channels: int = 4, | |
| dim: int = 4096, | |
| n_layers: int = 32, | |
| n_refiner_layers: int = 2, | |
| n_heads: int = 32, | |
| n_kv_heads: Optional[int] = None, | |
| multiple_of: int = 256, | |
| ffn_dim_multiplier: Optional[float] = None, | |
| norm_eps: float = 1e-5, | |
| qk_norm: bool = False, | |
| cap_feat_dim: int = 5120, | |
| axes_dims: List[int] = (16, 56, 56), | |
| axes_lens: List[int] = (1, 512, 512), | |
| ) -> None: | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels | |
| self.patch_size = patch_size | |
| self.x_embedder = nn.Linear( | |
| in_features=patch_size * patch_size * in_channels, | |
| out_features=dim, | |
| bias=True, | |
| ) | |
| nn.init.xavier_uniform_(self.x_embedder.weight) | |
| nn.init.constant_(self.x_embedder.bias, 0.0) | |
| self.noise_refiner = nn.ModuleList( | |
| [ | |
| JointTransformerBlock( | |
| layer_id, | |
| dim, | |
| n_heads, | |
| n_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| qk_norm, | |
| modulation=True, | |
| ) | |
| for layer_id in range(n_refiner_layers) | |
| ] | |
| ) | |
| self.context_refiner = nn.ModuleList( | |
| [ | |
| JointTransformerBlock( | |
| layer_id, | |
| dim, | |
| n_heads, | |
| n_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| qk_norm, | |
| modulation=False, | |
| ) | |
| for layer_id in range(n_refiner_layers) | |
| ] | |
| ) | |
| self.t_embedder = TimestepEmbedder(min(dim, 1024)) | |
| self.cap_embedder = nn.Sequential( | |
| RMSNorm(cap_feat_dim, eps=norm_eps), | |
| nn.Linear( | |
| cap_feat_dim, | |
| dim, | |
| bias=True, | |
| ), | |
| ) | |
| nn.init.trunc_normal_(self.cap_embedder[1].weight, std=0.02) | |
| # nn.init.zeros_(self.cap_embedder[1].weight) | |
| nn.init.zeros_(self.cap_embedder[1].bias) | |
| self.layers = nn.ModuleList( | |
| [ | |
| JointTransformerBlock( | |
| layer_id, | |
| dim, | |
| n_heads, | |
| n_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| qk_norm, | |
| ) | |
| for layer_id in range(n_layers) | |
| ] | |
| ) | |
| self.norm_final = RMSNorm(dim, eps=norm_eps) | |
| self.final_layer = FinalLayer(dim, patch_size, self.out_channels) | |
| assert (dim // n_heads) == sum(axes_dims) | |
| self.axes_dims = axes_dims | |
| self.axes_lens = axes_lens | |
| self.rope_embedder = RopeEmbedder(axes_dims=axes_dims, axes_lens=axes_lens) | |
| self.dim = dim | |
| self.n_heads = n_heads | |
| def unpatchify( | |
| self, x: torch.Tensor, img_size: List[Tuple[int, int]], cap_size: List[int], return_tensor=False | |
| ) -> List[torch.Tensor]: | |
| """ | |
| x: (N, T, patch_size**2 * C) | |
| imgs: (N, H, W, C) | |
| """ | |
| pH = pW = self.patch_size | |
| imgs = [] | |
| for i in range(x.size(0)): | |
| H, W = img_size[i] | |
| begin = cap_size[i] | |
| end = begin + (H // pH) * (W // pW) | |
| imgs.append( | |
| x[i][begin:end] | |
| .view(H // pH, W // pW, pH, pW, self.out_channels) | |
| .permute(4, 0, 2, 1, 3) | |
| .flatten(3, 4) | |
| .flatten(1, 2) | |
| ) | |
| if return_tensor: | |
| imgs = torch.stack(imgs, dim=0) | |
| return imgs | |
| def patchify_and_embed( | |
| self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]: | |
| bsz = len(x) | |
| pH = pW = self.patch_size | |
| device = x[0].device | |
| l_effective_cap_len = cap_mask.sum(dim=1).tolist() | |
| img_sizes = [(img.size(1), img.size(2)) for img in x] | |
| l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes] | |
| max_seq_len = max( | |
| (cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len)) | |
| ) | |
| max_cap_len = max(l_effective_cap_len) | |
| max_img_len = max(l_effective_img_len) | |
| position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device) | |
| for i in range(bsz): | |
| cap_len = l_effective_cap_len[i] | |
| img_len = l_effective_img_len[i] | |
| H, W = img_sizes[i] | |
| H_tokens, W_tokens = H // pH, W // pW | |
| assert H_tokens * W_tokens == img_len | |
| position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device) | |
| position_ids[i, cap_len:cap_len+img_len, 0] = cap_len | |
| row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten() | |
| col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten() | |
| position_ids[i, cap_len:cap_len+img_len, 1] = row_ids | |
| position_ids[i, cap_len:cap_len+img_len, 2] = col_ids | |
| freqs_cis = self.rope_embedder(position_ids) | |
| # build freqs_cis for cap and image individually | |
| cap_freqs_cis_shape = list(freqs_cis.shape) | |
| # cap_freqs_cis_shape[1] = max_cap_len | |
| cap_freqs_cis_shape[1] = cap_feats.shape[1] | |
| cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype) | |
| img_freqs_cis_shape = list(freqs_cis.shape) | |
| img_freqs_cis_shape[1] = max_img_len | |
| img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype) | |
| for i in range(bsz): | |
| cap_len = l_effective_cap_len[i] | |
| img_len = l_effective_img_len[i] | |
| cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len] | |
| img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len] | |
| # refine context | |
| for layer in self.context_refiner: | |
| cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis) | |
| # refine image | |
| flat_x = [] | |
| for i in range(bsz): | |
| img = x[i] | |
| C, H, W = img.size() | |
| img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1) | |
| flat_x.append(img) | |
| x = flat_x | |
| padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype) | |
| padded_img_mask = torch.zeros(bsz, max_img_len, dtype=torch.bool, device=device) | |
| for i in range(bsz): | |
| padded_img_embed[i, :l_effective_img_len[i]] = x[i] | |
| padded_img_mask[i, :l_effective_img_len[i]] = True | |
| padded_img_embed = self.x_embedder(padded_img_embed) | |
| for layer in self.noise_refiner: | |
| padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t) | |
| mask = torch.zeros(bsz, max_seq_len, dtype=torch.bool, device=device) | |
| padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype) | |
| for i in range(bsz): | |
| cap_len = l_effective_cap_len[i] | |
| img_len = l_effective_img_len[i] | |
| mask[i, :cap_len+img_len] = True | |
| padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len] | |
| padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len] | |
| return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis | |
| def forward(self, x, t, cap_feats, cap_mask): | |
| """ | |
| Forward pass of NextDiT. | |
| t: (N,) tensor of diffusion timesteps | |
| y: (N,) tensor of text tokens/features | |
| """ | |
| # import torch.distributed as dist | |
| # if not dist.is_initialized() or dist.get_rank() == 0: | |
| # import pdb | |
| # pdb.set_trace() | |
| # torch.save([x, t, cap_feats, cap_mask], "./fake_input.pt") | |
| t = self.t_embedder(t) # (N, D) | |
| adaln_input = t | |
| cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute | |
| x_is_tensor = isinstance(x, torch.Tensor) | |
| x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t) | |
| freqs_cis = freqs_cis.to(x.device) | |
| for layer in self.layers: | |
| x = layer(x, mask, freqs_cis, adaln_input) | |
| x = self.final_layer(x, adaln_input) | |
| x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor) | |
| return x | |
| def forward_with_cfg( | |
| self, | |
| x, | |
| t, | |
| cap_feats, | |
| cap_mask, | |
| cfg_scale, | |
| cfg_trunc=1, | |
| renorm_cfg=1 | |
| ): | |
| """ | |
| Forward pass of NextDiT, but also batches the unconditional forward pass | |
| for classifier-free guidance. | |
| """ | |
| # # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
| half = x[: len(x) // 2] | |
| if t[0] < cfg_trunc: | |
| combined = torch.cat([half, half], dim=0) # [2, 16, 128, 128] | |
| model_out = self.forward(combined, t, cap_feats, cap_mask) # [2, 16, 128, 128] | |
| # For exact reproducibility reasons, we apply classifier-free guidance on only | |
| # three channels by default. The standard approach to cfg applies it to all channels. | |
| # This can be done by uncommenting the following line and commenting-out the line following that. | |
| eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :] | |
| cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
| half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
| if float(renorm_cfg) > 0.0: | |
| ori_pos_norm = torch.linalg.vector_norm(cond_eps | |
| , dim=tuple(range(1, len(cond_eps.shape))), keepdim=True | |
| ) | |
| max_new_norm = ori_pos_norm * float(renorm_cfg) | |
| new_pos_norm = torch.linalg.vector_norm( | |
| half_eps, dim=tuple(range(1, len(half_eps.shape))), keepdim=True | |
| ) | |
| if new_pos_norm >= max_new_norm: | |
| half_eps = half_eps * (max_new_norm / new_pos_norm) | |
| else: | |
| combined = half | |
| model_out = self.forward(combined, t[:len(x) // 2], cap_feats[:len(x) // 2], cap_mask[:len(x) // 2]) | |
| eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :] | |
| half_eps = eps | |
| output = torch.cat([half_eps, half_eps], dim=0) | |
| return output | |
| def precompute_freqs_cis( | |
| dim: List[int], | |
| end: List[int], | |
| theta: float = 10000.0, | |
| ): | |
| """ | |
| Precompute the frequency tensor for complex exponentials (cis) with | |
| given dimensions. | |
| This function calculates a frequency tensor with complex exponentials | |
| using the given dimension 'dim' and the end index 'end'. The 'theta' | |
| parameter scales the frequencies. The returned tensor contains complex | |
| values in complex64 data type. | |
| Args: | |
| dim (list): Dimension of the frequency tensor. | |
| end (list): End index for precomputing frequencies. | |
| theta (float, optional): Scaling factor for frequency computation. | |
| Defaults to 10000.0. | |
| Returns: | |
| torch.Tensor: Precomputed frequency tensor with complex | |
| exponentials. | |
| """ | |
| freqs_cis = [] | |
| for i, (d, e) in enumerate(zip(dim, end)): | |
| freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d)) | |
| timestep = torch.arange(e, device=freqs.device, dtype=torch.float64) | |
| freqs = torch.outer(timestep, freqs).float() | |
| freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64) # complex64 | |
| freqs_cis.append(freqs_cis_i) | |
| return freqs_cis | |
| def parameter_count(self) -> int: | |
| total_params = 0 | |
| def _recursive_count_params(module): | |
| nonlocal total_params | |
| for param in module.parameters(recurse=False): | |
| total_params += param.numel() | |
| for submodule in module.children(): | |
| _recursive_count_params(submodule) | |
| _recursive_count_params(self) | |
| return total_params | |
| def get_fsdp_wrap_module_list(self) -> List[nn.Module]: | |
| return list(self.layers) | |
| def get_checkpointing_wrap_module_list(self) -> List[nn.Module]: | |
| return list(self.layers) | |
| ############################################################################# | |
| # NextDiT Configs # | |
| ############################################################################# | |
| def NextDiT_2B_GQA_patch2_Adaln_Refiner(**kwargs): | |
| return NextDiT( | |
| patch_size=2, | |
| dim=2304, | |
| n_layers=26, | |
| n_heads=24, | |
| n_kv_heads=8, | |
| axes_dims=[32, 32, 32], | |
| axes_lens=[300, 512, 512], | |
| **kwargs | |
| ) | |
| def NextDiT_3B_GQA_patch2_Adaln_Refiner(**kwargs): | |
| return NextDiT( | |
| patch_size=2, | |
| dim=2592, | |
| n_layers=30, | |
| n_heads=24, | |
| n_kv_heads=8, | |
| axes_dims=[36, 36, 36], | |
| axes_lens=[300, 512, 512], | |
| **kwargs, | |
| ) | |
| def NextDiT_4B_GQA_patch2_Adaln_Refiner(**kwargs): | |
| return NextDiT( | |
| patch_size=2, | |
| dim=2880, | |
| n_layers=32, | |
| n_heads=24, | |
| n_kv_heads=8, | |
| axes_dims=[40, 40, 40], | |
| axes_lens=[300, 512, 512], | |
| **kwargs, | |
| ) | |
| def NextDiT_7B_GQA_patch2_Adaln_Refiner(**kwargs): | |
| return NextDiT( | |
| patch_size=2, | |
| dim=3840, | |
| n_layers=32, | |
| n_heads=32, | |
| n_kv_heads=8, | |
| axes_dims=[40, 40, 40], | |
| axes_lens=[300, 512, 512], | |
| **kwargs, | |
| ) | |