Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| from fastapi import FastAPI | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from pydantic import BaseModel | |
| import logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| app = FastAPI() | |
| model_name = "google/gemma-2-2b-it" | |
| tokenizer = None | |
| model = None | |
| try: | |
| logger.info(f"Loading model: {model_name}") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.getenv("HF_TOKEN")) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, # メモリ削減 | |
| device_map="cpu", # GPU利用不可 | |
| token=os.getenv("HF_TOKEN"), | |
| low_cpu_mem_usage=True | |
| ) | |
| logger.info("Model loaded successfully") | |
| except Exception as e: | |
| logger.error(f"Model load error: {e}") | |
| raise | |
| class TextInput(BaseModel): | |
| text: str | |
| max_length: int = 50 | |
| async def generate_text(input: TextInput): | |
| try: | |
| logger.info(f"Generating text for input: {input.text}") | |
| inputs = tokenizer(input.text, return_tensors="pt", max_length=512, truncation=True).to("cpu") | |
| outputs = model.generate(**inputs, max_length=input.max_length) | |
| result = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| logger.info(f"Generated text: {result}") | |
| return {"generated_text": result} | |
| except Exception as e: | |
| logger.error(f"Generation error: {e}") | |
| return {"error": str(e)}" | |