Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI | |
| from pydantic import BaseModel # Import BaseModel untuk mendefinisikan model data | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| app = FastAPI() | |
| # Load model and tokenizer tanpa mendefinisikan cache_dir | |
| tokenizer = AutoTokenizer.from_pretrained("cahya/gpt2-small-indonesian-522M") | |
| model = AutoModelForCausalLM.from_pretrained("cahya/gpt2-small-indonesian-522M").to("cpu") | |
| # Definisikan model data untuk body JSON | |
| class GenerateRequest(BaseModel): | |
| prompt: str | |
| def home(): | |
| return {"message": "FastAPI running with Llama-3.2-1B-Instruct"} | |
| def generate_text(request: GenerateRequest): # Gunakan model data sebagai parameter | |
| inputs = tokenizer(request.prompt, return_tensors="pt").to("cpu") # Ambil prompt dari request | |
| output = model.generate(**inputs, max_length=300) | |
| generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
| return {"generated_text": generated_text} |