Spaces:
Sleeping
Sleeping
| from transformers import pipeline | |
| import gradio as gr | |
| # text summarizer | |
| summarizer = pipeline("summarization", model = "facebook/bart-large-cnn") | |
| def get_summary(text): | |
| output = summarizer(text) | |
| return output[0]["summary_text"] | |
| # named entity recognition | |
| ner_model = pipeline("ner", model = "dslim/bert-large-NER") | |
| def gen_ner(text): | |
| output = ner_model(text) | |
| return output | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown("Try out multiple NLP tasks!") | |
| with gr.Tab("Text Summarizer"): | |
| sum_input = gr.Textbox(placeholder="Enter text to summarize...", lines=4) | |
| sum_output = gr.Textbox() | |
| sum_btn = gr.Button("Summarize") | |
| sum_btn.click(get_summary, sum_input, sum_output) | |
| with gr.Tab("Named Entity Recognition"): | |
| ner_input = gr.Textbox(placeholder = "Enter text...", lines = 4) | |
| ner_output = gr.Textbox() | |
| ner_btn = gr.Button("Get named entities") | |
| ner_btn.click(get_ner, ner_input, ner_output) | |
| demo.launch() |