Spaces:
Sleeping
Sleeping
| from transformers import pipeline | |
| import gradio as gr | |
| from diffusers import DiffusionPipeline | |
| # 1. text summarizer | |
| summarizer = pipeline("summarization", model = "facebook/bart-large-cnn") | |
| def get_summary(text): | |
| output = summarizer(text) | |
| return output[0]["summary_text"] | |
| # 2. named entity recognition | |
| ner_model = pipeline("ner", model = "dslim/bert-large-NER") | |
| def get_ner(text): | |
| output = ner_model(text) | |
| return {"text":text, "entities":output} | |
| # 3. Image Captioning | |
| caption_model = pipeline("image-to-text", model = "Salesforce/blip-image-captioning-base") | |
| def get_caption(img): | |
| output = caption_model(img) | |
| return output[0]["generated_text"] | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown("# Try out some cool tasks!") | |
| with gr.Tab("Text Summarization"): | |
| sum_input = [gr.Textbox(label="Text to Summarize", placeholder="Enter text to summarize...", lines=4)] | |
| sum_btn = gr.Button("Summarize text") | |
| sum_output = [gr.Textbox(label="Summarized Text")] | |
| sum_btn.click(get_summary, sum_input, sum_output) | |
| with gr.Tab("Named Entity Recognition"): | |
| ner_input = [gr.Textbox(label="Text to find Entities", placeholder = "Enter text...", lines = 4)] | |
| ner_btn = gr.Button("Generate entities") | |
| ner_output = [gr.HighlightedText(label="Text with entities")] | |
| ner_btn.click(get_ner, ner_input, ner_output) | |
| with gr.Tab("Image Captioning"): | |
| cap_input = [gr.Image(label="Upload Image", type="pil")] | |
| cap_btn = gr.Button("Generate Caption") | |
| cap_output = [gr.Textbox(label="Caption")] | |
| cap_btn.click(get_caption, cap_input, cap_output) | |
| demo.launch() |