Spaces:
Sleeping
Sleeping
Commit
ยท
25dcfd9
1
Parent(s):
9e0d933
Changed gradio approx real-stream to FastRTC
Browse files
app.py
CHANGED
|
@@ -8,6 +8,7 @@ import os
|
|
| 8 |
import urllib.request
|
| 9 |
import torchaudio
|
| 10 |
from scipy.spatial.distance import cosine
|
|
|
|
| 11 |
import json
|
| 12 |
import io
|
| 13 |
import wave
|
|
@@ -57,9 +58,6 @@ SPEAKER_COLOR_NAMES = [
|
|
| 57 |
]
|
| 58 |
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
class SpeechBrainEncoder:
|
| 64 |
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
|
| 65 |
def __init__(self, device="cpu"):
|
|
@@ -70,11 +68,24 @@ class SpeechBrainEncoder:
|
|
| 70 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 71 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def load_model(self):
|
| 74 |
"""Load the ECAPA-TDNN model"""
|
| 75 |
try:
|
| 76 |
from speechbrain.pretrained import EncoderClassifier
|
| 77 |
|
|
|
|
|
|
|
| 78 |
self.model = EncoderClassifier.from_hparams(
|
| 79 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
| 80 |
savedir=self.cache_dir,
|
|
@@ -82,10 +93,9 @@ class SpeechBrainEncoder:
|
|
| 82 |
)
|
| 83 |
|
| 84 |
self.model_loaded = True
|
| 85 |
-
print("ECAPA-TDNN model loaded successfully!")
|
| 86 |
return True
|
| 87 |
except Exception as e:
|
| 88 |
-
print(f"
|
| 89 |
return False
|
| 90 |
|
| 91 |
def embed_utterance(self, audio, sr=16000):
|
|
@@ -116,21 +126,16 @@ class AudioProcessor:
|
|
| 116 |
def __init__(self, encoder):
|
| 117 |
self.encoder = encoder
|
| 118 |
|
| 119 |
-
def extract_embedding(self,
|
| 120 |
try:
|
| 121 |
-
|
| 122 |
-
if audio_data.dtype == np.int16:
|
| 123 |
-
float_audio = audio_data.astype(np.float32) / 32768.0
|
| 124 |
-
else:
|
| 125 |
-
float_audio = audio_data.astype(np.float32)
|
| 126 |
|
| 127 |
-
# Normalize if needed
|
| 128 |
if np.abs(float_audio).max() > 1.0:
|
| 129 |
float_audio = float_audio / np.abs(float_audio).max()
|
| 130 |
|
| 131 |
-
embedding = self.encoder.embed_utterance(float_audio
|
| 132 |
-
return embedding
|
| 133 |
|
|
|
|
| 134 |
except Exception as e:
|
| 135 |
print(f"Embedding extraction error: {e}")
|
| 136 |
return np.zeros(self.encoder.embedding_dim)
|
|
@@ -266,14 +271,68 @@ class SpeakerChangeDetector:
|
|
| 266 |
}
|
| 267 |
|
| 268 |
|
| 269 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
def __init__(self):
|
| 271 |
self.encoder = None
|
| 272 |
self.audio_processor = None
|
| 273 |
self.speaker_detector = None
|
|
|
|
|
|
|
|
|
|
| 274 |
self.full_sentences = []
|
| 275 |
self.sentence_speakers = []
|
| 276 |
-
self.
|
|
|
|
|
|
|
|
|
|
| 277 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 278 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 279 |
|
|
@@ -283,7 +342,6 @@ class GradioSpeakerDiarization:
|
|
| 283 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 284 |
print(f"Using device: {device_str}")
|
| 285 |
|
| 286 |
-
# Load SpeechBrain encoder
|
| 287 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
| 288 |
success = self.encoder.load_model()
|
| 289 |
|
|
@@ -294,62 +352,145 @@ class GradioSpeakerDiarization:
|
|
| 294 |
change_threshold=self.change_threshold,
|
| 295 |
max_speakers=self.max_speakers
|
| 296 |
)
|
| 297 |
-
self.
|
|
|
|
| 298 |
return True
|
| 299 |
else:
|
|
|
|
| 300 |
return False
|
| 301 |
-
|
| 302 |
except Exception as e:
|
| 303 |
print(f"Model initialization error: {e}")
|
| 304 |
return False
|
| 305 |
|
| 306 |
-
def
|
| 307 |
-
"""
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
try:
|
| 315 |
-
#
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
| 336 |
|
| 337 |
-
#
|
| 338 |
-
|
| 339 |
-
self.
|
|
|
|
| 340 |
|
| 341 |
-
|
|
|
|
|
|
|
| 342 |
|
| 343 |
-
return
|
| 344 |
|
| 345 |
except Exception as e:
|
| 346 |
-
|
| 347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
def clear_conversation(self):
|
| 350 |
"""Clear all conversation data"""
|
| 351 |
self.full_sentences = []
|
| 352 |
self.sentence_speakers = []
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
if self.speaker_detector:
|
| 355 |
self.speaker_detector = SpeakerChangeDetector(
|
|
@@ -358,7 +499,7 @@ class GradioSpeakerDiarization:
|
|
| 358 |
max_speakers=self.max_speakers
|
| 359 |
)
|
| 360 |
|
| 361 |
-
return "Conversation cleared!"
|
| 362 |
|
| 363 |
def update_settings(self, threshold, max_speakers):
|
| 364 |
"""Update speaker detection settings"""
|
|
@@ -369,22 +510,18 @@ class GradioSpeakerDiarization:
|
|
| 369 |
self.speaker_detector.set_change_threshold(threshold)
|
| 370 |
self.speaker_detector.set_max_speakers(max_speakers)
|
| 371 |
|
| 372 |
-
|
| 373 |
-
return status_msg, self.get_formatted_conversation(), self.get_status_info()
|
| 374 |
|
| 375 |
def get_formatted_conversation(self):
|
| 376 |
"""Get the formatted conversation with speaker colors"""
|
| 377 |
try:
|
| 378 |
-
if not self.full_sentences:
|
| 379 |
-
return "No audio processed yet. Upload an audio file or record using the microphone."
|
| 380 |
-
|
| 381 |
sentences_with_style = []
|
| 382 |
|
|
|
|
| 383 |
for i, sentence in enumerate(self.full_sentences):
|
| 384 |
sentence_text, _ = sentence
|
| 385 |
if i >= len(self.sentence_speakers):
|
| 386 |
color = "#FFFFFF"
|
| 387 |
-
speaker_name = "Unknown"
|
| 388 |
else:
|
| 389 |
speaker_id = self.sentence_speakers[i]
|
| 390 |
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
|
@@ -393,7 +530,15 @@ class GradioSpeakerDiarization:
|
|
| 393 |
sentences_with_style.append(
|
| 394 |
f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
|
| 395 |
|
| 396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
except Exception as e:
|
| 399 |
return f"Error formatting conversation: {e}"
|
|
@@ -411,7 +556,7 @@ class GradioSpeakerDiarization:
|
|
| 411 |
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
|
| 412 |
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
| 413 |
f"**Change Threshold:** {status['threshold']:.2f}",
|
| 414 |
-
f"**Total
|
| 415 |
"",
|
| 416 |
"**Speaker Segment Counts:**"
|
| 417 |
]
|
|
@@ -427,21 +572,26 @@ class GradioSpeakerDiarization:
|
|
| 427 |
|
| 428 |
|
| 429 |
# Global instance
|
| 430 |
-
diarization_system =
|
| 431 |
|
| 432 |
|
| 433 |
def initialize_system():
|
| 434 |
"""Initialize the diarization system"""
|
| 435 |
success = diarization_system.initialize_models()
|
| 436 |
if success:
|
| 437 |
-
return "โ
System initialized successfully! Models loaded."
|
| 438 |
else:
|
| 439 |
-
return "โ Failed to initialize system. Please check the logs."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
|
| 441 |
|
| 442 |
-
def
|
| 443 |
-
"""
|
| 444 |
-
return diarization_system.
|
| 445 |
|
| 446 |
|
| 447 |
def clear_conversation():
|
|
@@ -454,52 +604,59 @@ def update_settings(threshold, max_speakers):
|
|
| 454 |
return diarization_system.update_settings(threshold, max_speakers)
|
| 455 |
|
| 456 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
# Create Gradio interface
|
| 458 |
def create_interface():
|
| 459 |
-
with gr.Blocks(title="Speaker Diarization", theme=gr.themes.
|
| 460 |
-
gr.Markdown("# ๐ค
|
| 461 |
-
gr.Markdown("
|
| 462 |
|
| 463 |
with gr.Row():
|
| 464 |
with gr.Column(scale=2):
|
| 465 |
-
#
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
with gr.Tab("Upload Audio File"):
|
| 472 |
-
audio_file = gr.Audio(
|
| 473 |
-
label="Upload Audio File",
|
| 474 |
-
type="filepath",
|
| 475 |
-
sources=["upload"]
|
| 476 |
-
)
|
| 477 |
-
process_file_btn = gr.Button("Process Audio File", variant="secondary")
|
| 478 |
-
|
| 479 |
-
with gr.Tab("Record Audio"):
|
| 480 |
-
audio_mic = gr.Audio(
|
| 481 |
-
label="Record Audio",
|
| 482 |
-
type="numpy",
|
| 483 |
-
sources=["microphone"]
|
| 484 |
-
)
|
| 485 |
-
process_mic_btn = gr.Button("Process Recording", variant="secondary")
|
| 486 |
-
|
| 487 |
-
# Results display
|
| 488 |
-
status_output = gr.Textbox(
|
| 489 |
-
label="Status",
|
| 490 |
-
value="Click 'Initialize System' to start...",
|
| 491 |
-
lines=2,
|
| 492 |
-
interactive=False
|
| 493 |
)
|
| 494 |
|
|
|
|
| 495 |
conversation_output = gr.HTML(
|
| 496 |
-
value="<i>System
|
| 497 |
-
label="
|
| 498 |
)
|
| 499 |
|
| 500 |
# Control buttons
|
| 501 |
with gr.Row():
|
| 502 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
|
| 504 |
with gr.Column(scale=1):
|
| 505 |
# Settings panel
|
|
@@ -511,7 +668,7 @@ def create_interface():
|
|
| 511 |
step=0.05,
|
| 512 |
value=DEFAULT_CHANGE_THRESHOLD,
|
| 513 |
label="Speaker Change Sensitivity",
|
| 514 |
-
info="Lower = more sensitive to speaker changes"
|
| 515 |
)
|
| 516 |
|
| 517 |
max_speakers_slider = gr.Slider(
|
|
@@ -522,51 +679,106 @@ def create_interface():
|
|
| 522 |
label="Maximum Number of Speakers"
|
| 523 |
)
|
| 524 |
|
| 525 |
-
update_settings_btn = gr.Button("Update Settings"
|
| 526 |
|
| 527 |
-
#
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
|
|
|
|
|
|
|
|
|
| 534 |
|
| 535 |
# Speaker color legend
|
| 536 |
gr.Markdown("## ๐จ Speaker Colors")
|
| 537 |
color_info = []
|
| 538 |
-
for i, (color, name) in enumerate(zip(SPEAKER_COLORS
|
| 539 |
-
color_info.append(f'<span style="color:{color};"
|
| 540 |
|
| 541 |
-
gr.HTML("<br>".join(color_info))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
|
| 543 |
# Event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
init_btn.click(
|
| 545 |
-
|
| 546 |
-
outputs=[status_output, conversation_output,
|
| 547 |
)
|
| 548 |
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
outputs=[status_output, conversation_output, system_status]
|
| 553 |
)
|
| 554 |
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
outputs=[status_output, conversation_output, system_status]
|
| 559 |
)
|
| 560 |
|
| 561 |
clear_btn.click(
|
| 562 |
clear_conversation,
|
| 563 |
-
outputs=[status_output
|
| 564 |
)
|
| 565 |
|
| 566 |
update_settings_btn.click(
|
| 567 |
update_settings,
|
| 568 |
inputs=[threshold_slider, max_speakers_slider],
|
| 569 |
-
outputs=[status_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
)
|
| 571 |
|
| 572 |
return app
|
|
@@ -576,5 +788,6 @@ if __name__ == "__main__":
|
|
| 576 |
app = create_interface()
|
| 577 |
app.launch(
|
| 578 |
server_name="0.0.0.0",
|
| 579 |
-
server_port=7860
|
|
|
|
| 580 |
)
|
|
|
|
| 8 |
import urllib.request
|
| 9 |
import torchaudio
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
+
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
import json
|
| 13 |
import io
|
| 14 |
import wave
|
|
|
|
| 58 |
]
|
| 59 |
|
| 60 |
|
|
|
|
|
|
|
|
|
|
| 61 |
class SpeechBrainEncoder:
|
| 62 |
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
|
| 63 |
def __init__(self, device="cpu"):
|
|
|
|
| 68 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 69 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 70 |
|
| 71 |
+
def _download_model(self):
|
| 72 |
+
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
|
| 73 |
+
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
|
| 74 |
+
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(model_path):
|
| 77 |
+
print(f"Downloading ECAPA-TDNN model to {model_path}...")
|
| 78 |
+
urllib.request.urlretrieve(model_url, model_path)
|
| 79 |
+
|
| 80 |
+
return model_path
|
| 81 |
+
|
| 82 |
def load_model(self):
|
| 83 |
"""Load the ECAPA-TDNN model"""
|
| 84 |
try:
|
| 85 |
from speechbrain.pretrained import EncoderClassifier
|
| 86 |
|
| 87 |
+
model_path = self._download_model()
|
| 88 |
+
|
| 89 |
self.model = EncoderClassifier.from_hparams(
|
| 90 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
| 91 |
savedir=self.cache_dir,
|
|
|
|
| 93 |
)
|
| 94 |
|
| 95 |
self.model_loaded = True
|
|
|
|
| 96 |
return True
|
| 97 |
except Exception as e:
|
| 98 |
+
print(f"Error loading ECAPA-TDNN model: {e}")
|
| 99 |
return False
|
| 100 |
|
| 101 |
def embed_utterance(self, audio, sr=16000):
|
|
|
|
| 126 |
def __init__(self, encoder):
|
| 127 |
self.encoder = encoder
|
| 128 |
|
| 129 |
+
def extract_embedding(self, audio_int16):
|
| 130 |
try:
|
| 131 |
+
float_audio = audio_int16.astype(np.float32) / 32768.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
|
|
|
| 133 |
if np.abs(float_audio).max() > 1.0:
|
| 134 |
float_audio = float_audio / np.abs(float_audio).max()
|
| 135 |
|
| 136 |
+
embedding = self.encoder.embed_utterance(float_audio)
|
|
|
|
| 137 |
|
| 138 |
+
return embedding
|
| 139 |
except Exception as e:
|
| 140 |
print(f"Embedding extraction error: {e}")
|
| 141 |
return np.zeros(self.encoder.embedding_dim)
|
|
|
|
| 271 |
}
|
| 272 |
|
| 273 |
|
| 274 |
+
class WebRTCAudioProcessor:
|
| 275 |
+
"""Processes WebRTC audio streams for speaker diarization"""
|
| 276 |
+
def __init__(self, diarization_system):
|
| 277 |
+
self.diarization_system = diarization_system
|
| 278 |
+
self.audio_buffer = []
|
| 279 |
+
self.buffer_lock = threading.Lock()
|
| 280 |
+
self.processing_thread = None
|
| 281 |
+
self.is_processing = False
|
| 282 |
+
|
| 283 |
+
def process_audio(self, audio_data, sample_rate):
|
| 284 |
+
"""Process incoming audio data from WebRTC"""
|
| 285 |
+
try:
|
| 286 |
+
# Convert audio data to numpy array if needed
|
| 287 |
+
if isinstance(audio_data, bytes):
|
| 288 |
+
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
| 289 |
+
elif isinstance(audio_data, tuple):
|
| 290 |
+
# Handle tuple format (sample_rate, audio_array)
|
| 291 |
+
sample_rate, audio_array = audio_data
|
| 292 |
+
if isinstance(audio_array, np.ndarray):
|
| 293 |
+
if audio_array.dtype != np.int16:
|
| 294 |
+
audio_array = (audio_array * 32767).astype(np.int16)
|
| 295 |
+
else:
|
| 296 |
+
audio_array = np.array(audio_array, dtype=np.int16)
|
| 297 |
+
else:
|
| 298 |
+
audio_array = np.array(audio_data, dtype=np.int16)
|
| 299 |
+
|
| 300 |
+
# Ensure mono audio
|
| 301 |
+
if len(audio_array.shape) > 1:
|
| 302 |
+
audio_array = audio_array[:, 0]
|
| 303 |
+
|
| 304 |
+
# Add to buffer
|
| 305 |
+
with self.buffer_lock:
|
| 306 |
+
self.audio_buffer.extend(audio_array)
|
| 307 |
+
|
| 308 |
+
# Process buffer when it's large enough (1 second of audio)
|
| 309 |
+
if len(self.audio_buffer) >= sample_rate:
|
| 310 |
+
buffer_to_process = np.array(self.audio_buffer[:sample_rate])
|
| 311 |
+
self.audio_buffer = self.audio_buffer[sample_rate//2:] # Keep 50% overlap
|
| 312 |
+
|
| 313 |
+
# Feed to recorder in separate thread
|
| 314 |
+
if self.diarization_system.recorder:
|
| 315 |
+
audio_bytes = buffer_to_process.tobytes()
|
| 316 |
+
self.diarization_system.recorder.feed_audio(audio_bytes)
|
| 317 |
+
|
| 318 |
+
except Exception as e:
|
| 319 |
+
print(f"Error processing WebRTC audio: {e}")
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
class RealtimeSpeakerDiarization:
|
| 323 |
def __init__(self):
|
| 324 |
self.encoder = None
|
| 325 |
self.audio_processor = None
|
| 326 |
self.speaker_detector = None
|
| 327 |
+
self.recorder = None
|
| 328 |
+
self.webrtc_processor = None
|
| 329 |
+
self.sentence_queue = queue.Queue()
|
| 330 |
self.full_sentences = []
|
| 331 |
self.sentence_speakers = []
|
| 332 |
+
self.pending_sentences = []
|
| 333 |
+
self.displayed_text = ""
|
| 334 |
+
self.last_realtime_text = ""
|
| 335 |
+
self.is_running = False
|
| 336 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 337 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 338 |
|
|
|
|
| 342 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 343 |
print(f"Using device: {device_str}")
|
| 344 |
|
|
|
|
| 345 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
| 346 |
success = self.encoder.load_model()
|
| 347 |
|
|
|
|
| 352 |
change_threshold=self.change_threshold,
|
| 353 |
max_speakers=self.max_speakers
|
| 354 |
)
|
| 355 |
+
self.webrtc_processor = WebRTCAudioProcessor(self)
|
| 356 |
+
print("ECAPA-TDNN model loaded successfully!")
|
| 357 |
return True
|
| 358 |
else:
|
| 359 |
+
print("Failed to load ECAPA-TDNN model")
|
| 360 |
return False
|
|
|
|
| 361 |
except Exception as e:
|
| 362 |
print(f"Model initialization error: {e}")
|
| 363 |
return False
|
| 364 |
|
| 365 |
+
def live_text_detected(self, text):
|
| 366 |
+
"""Callback for real-time transcription updates"""
|
| 367 |
+
text = text.strip()
|
| 368 |
+
if text:
|
| 369 |
+
sentence_delimiters = '.?!ใ'
|
| 370 |
+
prob_sentence_end = (
|
| 371 |
+
len(self.last_realtime_text) > 0
|
| 372 |
+
and text[-1] in sentence_delimiters
|
| 373 |
+
and self.last_realtime_text[-1] in sentence_delimiters
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
self.last_realtime_text = text
|
| 377 |
+
|
| 378 |
+
if prob_sentence_end and FAST_SENTENCE_END:
|
| 379 |
+
self.recorder.stop()
|
| 380 |
+
elif prob_sentence_end:
|
| 381 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
|
| 382 |
+
else:
|
| 383 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
|
| 384 |
+
|
| 385 |
+
def process_final_text(self, text):
|
| 386 |
+
"""Process final transcribed text with speaker embedding"""
|
| 387 |
+
text = text.strip()
|
| 388 |
+
if text:
|
| 389 |
+
try:
|
| 390 |
+
bytes_data = self.recorder.last_transcription_bytes
|
| 391 |
+
self.sentence_queue.put((text, bytes_data))
|
| 392 |
+
self.pending_sentences.append(text)
|
| 393 |
+
except Exception as e:
|
| 394 |
+
print(f"Error processing final text: {e}")
|
| 395 |
+
|
| 396 |
+
def process_sentence_queue(self):
|
| 397 |
+
"""Process sentences in the queue for speaker detection"""
|
| 398 |
+
while self.is_running:
|
| 399 |
+
try:
|
| 400 |
+
text, bytes_data = self.sentence_queue.get(timeout=1)
|
| 401 |
+
|
| 402 |
+
# Convert audio data to int16
|
| 403 |
+
audio_int16 = np.int16(bytes_data * 32767)
|
| 404 |
+
|
| 405 |
+
# Extract speaker embedding
|
| 406 |
+
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
|
| 407 |
+
|
| 408 |
+
# Store sentence and embedding
|
| 409 |
+
self.full_sentences.append((text, speaker_embedding))
|
| 410 |
+
|
| 411 |
+
# Fill in missing speaker assignments
|
| 412 |
+
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
|
| 413 |
+
self.sentence_speakers.append(0)
|
| 414 |
+
|
| 415 |
+
# Detect speaker changes
|
| 416 |
+
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
|
| 417 |
+
self.sentence_speakers.append(speaker_id)
|
| 418 |
+
|
| 419 |
+
# Remove from pending
|
| 420 |
+
if text in self.pending_sentences:
|
| 421 |
+
self.pending_sentences.remove(text)
|
| 422 |
+
|
| 423 |
+
except queue.Empty:
|
| 424 |
+
continue
|
| 425 |
+
except Exception as e:
|
| 426 |
+
print(f"Error processing sentence: {e}")
|
| 427 |
+
|
| 428 |
+
def start_recording(self):
|
| 429 |
+
"""Start the recording and transcription process"""
|
| 430 |
+
if self.encoder is None:
|
| 431 |
+
return "Please initialize models first!"
|
| 432 |
|
| 433 |
try:
|
| 434 |
+
# Setup recorder configuration for WebRTC input
|
| 435 |
+
recorder_config = {
|
| 436 |
+
'spinner': False,
|
| 437 |
+
'use_microphone': False, # We'll feed audio manually
|
| 438 |
+
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 439 |
+
'language': TRANSCRIPTION_LANGUAGE,
|
| 440 |
+
'silero_sensitivity': SILERO_SENSITIVITY,
|
| 441 |
+
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
|
| 442 |
+
'post_speech_silence_duration': SILENCE_THRESHS[1],
|
| 443 |
+
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
|
| 444 |
+
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 445 |
+
'min_gap_between_recordings': 0,
|
| 446 |
+
'enable_realtime_transcription': True,
|
| 447 |
+
'realtime_processing_pause': 0,
|
| 448 |
+
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 449 |
+
'on_realtime_transcription_update': self.live_text_detected,
|
| 450 |
+
'beam_size': FINAL_BEAM_SIZE,
|
| 451 |
+
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
| 452 |
+
'buffer_size': BUFFER_SIZE,
|
| 453 |
+
'sample_rate': SAMPLE_RATE,
|
| 454 |
+
}
|
| 455 |
+
|
| 456 |
+
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 457 |
|
| 458 |
+
# Start sentence processing thread
|
| 459 |
+
self.is_running = True
|
| 460 |
+
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 461 |
+
self.sentence_thread.start()
|
| 462 |
|
| 463 |
+
# Start transcription thread
|
| 464 |
+
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 465 |
+
self.transcription_thread.start()
|
| 466 |
|
| 467 |
+
return "Recording started successfully! WebRTC audio input ready."
|
| 468 |
|
| 469 |
except Exception as e:
|
| 470 |
+
return f"Error starting recording: {e}"
|
| 471 |
+
|
| 472 |
+
def run_transcription(self):
|
| 473 |
+
"""Run the transcription loop"""
|
| 474 |
+
try:
|
| 475 |
+
while self.is_running:
|
| 476 |
+
self.recorder.text(self.process_final_text)
|
| 477 |
+
except Exception as e:
|
| 478 |
+
print(f"Transcription error: {e}")
|
| 479 |
+
|
| 480 |
+
def stop_recording(self):
|
| 481 |
+
"""Stop the recording process"""
|
| 482 |
+
self.is_running = False
|
| 483 |
+
if self.recorder:
|
| 484 |
+
self.recorder.stop()
|
| 485 |
+
return "Recording stopped!"
|
| 486 |
|
| 487 |
def clear_conversation(self):
|
| 488 |
"""Clear all conversation data"""
|
| 489 |
self.full_sentences = []
|
| 490 |
self.sentence_speakers = []
|
| 491 |
+
self.pending_sentences = []
|
| 492 |
+
self.displayed_text = ""
|
| 493 |
+
self.last_realtime_text = ""
|
| 494 |
|
| 495 |
if self.speaker_detector:
|
| 496 |
self.speaker_detector = SpeakerChangeDetector(
|
|
|
|
| 499 |
max_speakers=self.max_speakers
|
| 500 |
)
|
| 501 |
|
| 502 |
+
return "Conversation cleared!"
|
| 503 |
|
| 504 |
def update_settings(self, threshold, max_speakers):
|
| 505 |
"""Update speaker detection settings"""
|
|
|
|
| 510 |
self.speaker_detector.set_change_threshold(threshold)
|
| 511 |
self.speaker_detector.set_max_speakers(max_speakers)
|
| 512 |
|
| 513 |
+
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
|
|
|
| 514 |
|
| 515 |
def get_formatted_conversation(self):
|
| 516 |
"""Get the formatted conversation with speaker colors"""
|
| 517 |
try:
|
|
|
|
|
|
|
|
|
|
| 518 |
sentences_with_style = []
|
| 519 |
|
| 520 |
+
# Process completed sentences
|
| 521 |
for i, sentence in enumerate(self.full_sentences):
|
| 522 |
sentence_text, _ = sentence
|
| 523 |
if i >= len(self.sentence_speakers):
|
| 524 |
color = "#FFFFFF"
|
|
|
|
| 525 |
else:
|
| 526 |
speaker_id = self.sentence_speakers[i]
|
| 527 |
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
|
|
|
| 530 |
sentences_with_style.append(
|
| 531 |
f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
|
| 532 |
|
| 533 |
+
# Add pending sentences
|
| 534 |
+
for pending_sentence in self.pending_sentences:
|
| 535 |
+
sentences_with_style.append(
|
| 536 |
+
f'<span style="color:#60FFFF;"><b>Processing:</b> {pending_sentence}</span>')
|
| 537 |
+
|
| 538 |
+
if sentences_with_style:
|
| 539 |
+
return "<br><br>".join(sentences_with_style)
|
| 540 |
+
else:
|
| 541 |
+
return "Waiting for speech input..."
|
| 542 |
|
| 543 |
except Exception as e:
|
| 544 |
return f"Error formatting conversation: {e}"
|
|
|
|
| 556 |
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
|
| 557 |
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
| 558 |
f"**Change Threshold:** {status['threshold']:.2f}",
|
| 559 |
+
f"**Total Sentences:** {len(self.full_sentences)}",
|
| 560 |
"",
|
| 561 |
"**Speaker Segment Counts:**"
|
| 562 |
]
|
|
|
|
| 572 |
|
| 573 |
|
| 574 |
# Global instance
|
| 575 |
+
diarization_system = RealtimeSpeakerDiarization()
|
| 576 |
|
| 577 |
|
| 578 |
def initialize_system():
|
| 579 |
"""Initialize the diarization system"""
|
| 580 |
success = diarization_system.initialize_models()
|
| 581 |
if success:
|
| 582 |
+
return "โ
System initialized successfully! Models loaded."
|
| 583 |
else:
|
| 584 |
+
return "โ Failed to initialize system. Please check the logs."
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
def start_recording():
|
| 588 |
+
"""Start recording and transcription"""
|
| 589 |
+
return diarization_system.start_recording()
|
| 590 |
|
| 591 |
|
| 592 |
+
def stop_recording():
|
| 593 |
+
"""Stop recording and transcription"""
|
| 594 |
+
return diarization_system.stop_recording()
|
| 595 |
|
| 596 |
|
| 597 |
def clear_conversation():
|
|
|
|
| 604 |
return diarization_system.update_settings(threshold, max_speakers)
|
| 605 |
|
| 606 |
|
| 607 |
+
def get_conversation():
|
| 608 |
+
"""Get the current conversation"""
|
| 609 |
+
return diarization_system.get_formatted_conversation()
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
def get_status():
|
| 613 |
+
"""Get system status"""
|
| 614 |
+
return diarization_system.get_status_info()
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
def process_audio_stream(audio):
|
| 618 |
+
"""Process audio stream from WebRTC"""
|
| 619 |
+
if diarization_system.webrtc_processor and diarization_system.is_running:
|
| 620 |
+
diarization_system.webrtc_processor.process_audio(audio, SAMPLE_RATE)
|
| 621 |
+
return None
|
| 622 |
+
|
| 623 |
+
|
| 624 |
# Create Gradio interface
|
| 625 |
def create_interface():
|
| 626 |
+
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Dark()) as app:
|
| 627 |
+
gr.Markdown("# ๐ค Real-time Speech Recognition with Speaker Diarization")
|
| 628 |
+
gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding using WebRTC.")
|
| 629 |
|
| 630 |
with gr.Row():
|
| 631 |
with gr.Column(scale=2):
|
| 632 |
+
# WebRTC Audio Input
|
| 633 |
+
audio_input = gr.Audio(
|
| 634 |
+
sources=["microphone"],
|
| 635 |
+
streaming=True,
|
| 636 |
+
label="๐๏ธ Microphone Input",
|
| 637 |
+
type="numpy"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 638 |
)
|
| 639 |
|
| 640 |
+
# Main conversation display
|
| 641 |
conversation_output = gr.HTML(
|
| 642 |
+
value="<i>Click 'Initialize System' to start...</i>",
|
| 643 |
+
label="Live Conversation"
|
| 644 |
)
|
| 645 |
|
| 646 |
# Control buttons
|
| 647 |
with gr.Row():
|
| 648 |
+
init_btn = gr.Button("๐ง Initialize System", variant="secondary")
|
| 649 |
+
start_btn = gr.Button("๐๏ธ Start Recording", variant="primary", interactive=False)
|
| 650 |
+
stop_btn = gr.Button("โน๏ธ Stop Recording", variant="stop", interactive=False)
|
| 651 |
+
clear_btn = gr.Button("๐๏ธ Clear Conversation", interactive=False)
|
| 652 |
+
|
| 653 |
+
# Status display
|
| 654 |
+
status_output = gr.Textbox(
|
| 655 |
+
label="System Status",
|
| 656 |
+
value="System not initialized",
|
| 657 |
+
lines=8,
|
| 658 |
+
interactive=False
|
| 659 |
+
)
|
| 660 |
|
| 661 |
with gr.Column(scale=1):
|
| 662 |
# Settings panel
|
|
|
|
| 668 |
step=0.05,
|
| 669 |
value=DEFAULT_CHANGE_THRESHOLD,
|
| 670 |
label="Speaker Change Sensitivity",
|
| 671 |
+
info="Lower values = more sensitive to speaker changes"
|
| 672 |
)
|
| 673 |
|
| 674 |
max_speakers_slider = gr.Slider(
|
|
|
|
| 679 |
label="Maximum Number of Speakers"
|
| 680 |
)
|
| 681 |
|
| 682 |
+
update_settings_btn = gr.Button("Update Settings")
|
| 683 |
|
| 684 |
+
# Instructions
|
| 685 |
+
gr.Markdown("## ๐ Instructions")
|
| 686 |
+
gr.Markdown("""
|
| 687 |
+
1. Click **Initialize System** to load models
|
| 688 |
+
2. Click **Start Recording** to begin processing
|
| 689 |
+
3. Allow microphone access when prompted
|
| 690 |
+
4. Speak into your microphone
|
| 691 |
+
5. Watch real-time transcription with speaker labels
|
| 692 |
+
6. Adjust settings as needed
|
| 693 |
+
""")
|
| 694 |
|
| 695 |
# Speaker color legend
|
| 696 |
gr.Markdown("## ๐จ Speaker Colors")
|
| 697 |
color_info = []
|
| 698 |
+
for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)):
|
| 699 |
+
color_info.append(f'<span style="color:{color};">โ </span> Speaker {i+1} ({name})')
|
| 700 |
|
| 701 |
+
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
| 702 |
+
|
| 703 |
+
# Auto-refresh conversation and status
|
| 704 |
+
def refresh_display():
|
| 705 |
+
return get_conversation(), get_status()
|
| 706 |
|
| 707 |
# Event handlers
|
| 708 |
+
def on_initialize():
|
| 709 |
+
result = initialize_system()
|
| 710 |
+
if "successfully" in result:
|
| 711 |
+
return (
|
| 712 |
+
result,
|
| 713 |
+
gr.update(interactive=True), # start_btn
|
| 714 |
+
gr.update(interactive=True), # clear_btn
|
| 715 |
+
get_conversation(),
|
| 716 |
+
get_status()
|
| 717 |
+
)
|
| 718 |
+
else:
|
| 719 |
+
return (
|
| 720 |
+
result,
|
| 721 |
+
gr.update(interactive=False), # start_btn
|
| 722 |
+
gr.update(interactive=False), # clear_btn
|
| 723 |
+
get_conversation(),
|
| 724 |
+
get_status()
|
| 725 |
+
)
|
| 726 |
+
|
| 727 |
+
def on_start():
|
| 728 |
+
result = start_recording()
|
| 729 |
+
return (
|
| 730 |
+
result,
|
| 731 |
+
gr.update(interactive=False), # start_btn
|
| 732 |
+
gr.update(interactive=True), # stop_btn
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
def on_stop():
|
| 736 |
+
result = stop_recording()
|
| 737 |
+
return (
|
| 738 |
+
result,
|
| 739 |
+
gr.update(interactive=True), # start_btn
|
| 740 |
+
gr.update(interactive=False), # stop_btn
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
# Connect event handlers
|
| 744 |
init_btn.click(
|
| 745 |
+
on_initialize,
|
| 746 |
+
outputs=[status_output, start_btn, clear_btn, conversation_output, status_output]
|
| 747 |
)
|
| 748 |
|
| 749 |
+
start_btn.click(
|
| 750 |
+
on_start,
|
| 751 |
+
outputs=[status_output, start_btn, stop_btn]
|
|
|
|
| 752 |
)
|
| 753 |
|
| 754 |
+
stop_btn.click(
|
| 755 |
+
on_stop,
|
| 756 |
+
outputs=[status_output, start_btn, stop_btn]
|
|
|
|
| 757 |
)
|
| 758 |
|
| 759 |
clear_btn.click(
|
| 760 |
clear_conversation,
|
| 761 |
+
outputs=[status_output]
|
| 762 |
)
|
| 763 |
|
| 764 |
update_settings_btn.click(
|
| 765 |
update_settings,
|
| 766 |
inputs=[threshold_slider, max_speakers_slider],
|
| 767 |
+
outputs=[status_output]
|
| 768 |
+
)
|
| 769 |
+
|
| 770 |
+
# Connect WebRTC audio stream to processing
|
| 771 |
+
audio_input.stream(
|
| 772 |
+
process_audio_stream,
|
| 773 |
+
inputs=[audio_input],
|
| 774 |
+
outputs=[]
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
# Auto-refresh every 2 seconds when recording
|
| 778 |
+
refresh_timer = gr.Timer(2.0)
|
| 779 |
+
refresh_timer.tick(
|
| 780 |
+
refresh_display,
|
| 781 |
+
outputs=[conversation_output, status_output]
|
| 782 |
)
|
| 783 |
|
| 784 |
return app
|
|
|
|
| 788 |
app = create_interface()
|
| 789 |
app.launch(
|
| 790 |
server_name="0.0.0.0",
|
| 791 |
+
server_port=7860,
|
| 792 |
+
share=True
|
| 793 |
)
|