Spaces:
Sleeping
Sleeping
Commit
·
3466e71
1
Parent(s):
7662a6a
Revert portg
Browse files
app.py
CHANGED
|
@@ -283,7 +283,7 @@ class RealtimeSpeakerDiarization:
|
|
| 283 |
self.audio_processor = None
|
| 284 |
self.speaker_detector = None
|
| 285 |
self.recorder = None
|
| 286 |
-
self.sentence_queue = queue.Queue()
|
| 287 |
self.full_sentences = []
|
| 288 |
self.sentence_speakers = []
|
| 289 |
self.pending_sentences = []
|
|
@@ -294,6 +294,9 @@ class RealtimeSpeakerDiarization:
|
|
| 294 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 295 |
self.current_conversation = ""
|
| 296 |
self.audio_buffer = []
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
def initialize_models(self):
|
| 299 |
"""Initialize the speaker encoder model"""
|
|
@@ -302,9 +305,25 @@ class RealtimeSpeakerDiarization:
|
|
| 302 |
print(f"Using device: {device_str}")
|
| 303 |
|
| 304 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
| 305 |
-
success = self.encoder.load_model()
|
| 306 |
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
self.audio_processor = AudioProcessor(self.encoder)
|
| 309 |
self.speaker_detector = SpeakerChangeDetector(
|
| 310 |
embedding_dim=self.encoder.embedding_dim,
|
|
@@ -314,10 +333,52 @@ class RealtimeSpeakerDiarization:
|
|
| 314 |
print("ECAPA-TDNN model loaded successfully!")
|
| 315 |
return True
|
| 316 |
else:
|
| 317 |
-
print("Failed to load ECAPA-TDNN model")
|
| 318 |
-
return
|
|
|
|
| 319 |
except Exception as e:
|
| 320 |
print(f"Model initialization error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
return False
|
| 322 |
|
| 323 |
def live_text_detected(self, text):
|
|
@@ -346,8 +407,9 @@ class RealtimeSpeakerDiarization:
|
|
| 346 |
if text:
|
| 347 |
try:
|
| 348 |
bytes_data = self.recorder.last_transcription_bytes
|
| 349 |
-
self.sentence_queue.put((text, bytes_data))
|
| 350 |
-
self.
|
|
|
|
| 351 |
except Exception as e:
|
| 352 |
print(f"Error processing final text: {e}")
|
| 353 |
|
|
@@ -363,28 +425,31 @@ class RealtimeSpeakerDiarization:
|
|
| 363 |
# Extract speaker embedding
|
| 364 |
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
|
| 365 |
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
self.sentence_speakers.
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
self.pending_sentences
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
|
|
|
| 383 |
|
| 384 |
except queue.Empty:
|
| 385 |
continue
|
| 386 |
except Exception as e:
|
| 387 |
print(f"Error processing sentence: {e}")
|
|
|
|
|
|
|
| 388 |
|
| 389 |
def start_recording(self):
|
| 390 |
"""Start the recording and transcription process"""
|
|
@@ -412,10 +477,22 @@ class RealtimeSpeakerDiarization:
|
|
| 412 |
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
| 413 |
'buffer_size': BUFFER_SIZE,
|
| 414 |
'sample_rate': SAMPLE_RATE,
|
|
|
|
| 415 |
}
|
| 416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 418 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
# Start sentence processing thread
|
| 420 |
self.is_running = True
|
| 421 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
|
@@ -428,7 +505,10 @@ class RealtimeSpeakerDiarization:
|
|
| 428 |
return "Recording started successfully! FastRTC audio input ready."
|
| 429 |
|
| 430 |
except Exception as e:
|
| 431 |
-
|
|
|
|
|
|
|
|
|
|
| 432 |
|
| 433 |
def run_transcription(self):
|
| 434 |
"""Run the transcription loop"""
|
|
@@ -443,8 +523,48 @@ class RealtimeSpeakerDiarization:
|
|
| 443 |
self.is_running = False
|
| 444 |
if self.recorder:
|
| 445 |
self.recorder.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
return "Recording stopped!"
|
| 447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
def clear_conversation(self):
|
| 449 |
"""Clear all conversation data"""
|
| 450 |
self.full_sentences = []
|
|
@@ -553,11 +673,23 @@ class RealtimeSpeakerDiarization:
|
|
| 553 |
else:
|
| 554 |
audio_bytes = audio_data
|
| 555 |
|
| 556 |
-
#
|
| 557 |
-
self.recorder.feed_audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
|
| 559 |
except Exception as e:
|
| 560 |
-
print(f"Error feeding audio data: {e}")
|
|
|
|
|
|
|
| 561 |
|
| 562 |
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
| 563 |
"""Process audio chunk from FastRTC input"""
|
|
@@ -565,34 +697,30 @@ class RealtimeSpeakerDiarization:
|
|
| 565 |
return
|
| 566 |
|
| 567 |
try:
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
# Float audio is normalized to [-1, 1], convert to int16
|
| 572 |
-
audio_int16 = (audio_data * 32767).astype(np.int16)
|
| 573 |
-
else:
|
| 574 |
-
# Audio is already in higher range
|
| 575 |
-
audio_int16 = audio_data.astype(np.int16)
|
| 576 |
-
else:
|
| 577 |
-
audio_int16 = audio_data
|
| 578 |
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
|
|
|
| 582 |
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
|
| 593 |
except Exception as e:
|
| 594 |
-
print(f"Error processing audio chunk: {e}")
|
| 595 |
-
|
|
|
|
|
|
|
| 596 |
def _resample_audio(self, audio, orig_sr, target_sr):
|
| 597 |
"""Resample audio to target sample rate"""
|
| 598 |
try:
|
|
@@ -613,6 +741,60 @@ class RealtimeSpeakerDiarization:
|
|
| 613 |
print(f"Error resampling audio: {e}")
|
| 614 |
return audio
|
| 615 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 616 |
|
| 617 |
# FastRTC Audio Handler for Real-time Diarization
|
| 618 |
|
|
@@ -620,9 +802,10 @@ class DiarizationHandler(AsyncStreamHandler):
|
|
| 620 |
def __init__(self, diarization_system):
|
| 621 |
super().__init__()
|
| 622 |
self.diarization_system = diarization_system
|
| 623 |
-
self.audio_queue = Queue()
|
| 624 |
self.is_processing = False
|
| 625 |
self.sample_rate = 16000 # Default sample rate
|
|
|
|
| 626 |
|
| 627 |
def copy(self):
|
| 628 |
"""Return a fresh handler for each new stream connection"""
|
|
@@ -646,39 +829,75 @@ class DiarizationHandler(AsyncStreamHandler):
|
|
| 646 |
else:
|
| 647 |
audio_data = frame
|
| 648 |
|
| 649 |
-
# Convert to numpy array if needed
|
| 650 |
-
if isinstance(audio_data, bytes):
|
| 651 |
-
# Convert bytes to numpy array (assuming 16-bit PCM)
|
| 652 |
-
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
| 653 |
-
# Normalize to float32 range [-1, 1]
|
| 654 |
-
audio_array = audio_array.astype(np.float32) / 32768.0
|
| 655 |
-
elif isinstance(audio_data, (list, tuple)):
|
| 656 |
-
audio_array = np.array(audio_data, dtype=np.float32)
|
| 657 |
-
elif isinstance(audio_data, np.ndarray):
|
| 658 |
-
audio_array = audio_data.astype(np.float32)
|
| 659 |
-
else:
|
| 660 |
-
print(f"Unknown audio data type: {type(audio_data)}")
|
| 661 |
-
return
|
| 662 |
-
|
| 663 |
-
# Ensure mono audio
|
| 664 |
-
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
| 665 |
-
audio_array = np.mean(audio_array, axis=1)
|
| 666 |
-
|
| 667 |
-
# Ensure 1D array
|
| 668 |
-
if len(audio_array.shape) > 1:
|
| 669 |
-
audio_array = audio_array.flatten()
|
| 670 |
-
|
| 671 |
# Get sample rate from frame if available
|
| 672 |
sample_rate = getattr(frame, 'sample_rate', self.sample_rate)
|
| 673 |
|
| 674 |
-
#
|
| 675 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 676 |
|
| 677 |
except Exception as e:
|
| 678 |
print(f"Error in FastRTC audio receive: {e}")
|
| 679 |
import traceback
|
| 680 |
traceback.print_exc()
|
| 681 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 682 |
async def process_audio_async(self, audio_data, sample_rate=16000):
|
| 683 |
"""Process audio data asynchronously"""
|
| 684 |
try:
|
|
@@ -698,10 +917,30 @@ class DiarizationHandler(AsyncStreamHandler):
|
|
| 698 |
print("FastRTC stream started")
|
| 699 |
self.is_processing = True
|
| 700 |
|
|
|
|
|
|
|
|
|
|
| 701 |
async def shutdown(self) -> None:
|
| 702 |
"""Clean up any resources when the stream ends"""
|
| 703 |
print("FastRTC stream shutting down")
|
| 704 |
self.is_processing = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 705 |
|
| 706 |
|
| 707 |
# Global instances
|
|
|
|
| 283 |
self.audio_processor = None
|
| 284 |
self.speaker_detector = None
|
| 285 |
self.recorder = None
|
| 286 |
+
self.sentence_queue = queue.Queue(maxsize=100) # Add maxsize to prevent unlimited growth
|
| 287 |
self.full_sentences = []
|
| 288 |
self.sentence_speakers = []
|
| 289 |
self.pending_sentences = []
|
|
|
|
| 294 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 295 |
self.current_conversation = ""
|
| 296 |
self.audio_buffer = []
|
| 297 |
+
# Add locks for thread safety
|
| 298 |
+
self._state_lock = threading.RLock() # Reentrant lock for shared state
|
| 299 |
+
self._audio_lock = threading.Lock() # Lock for audio processing
|
| 300 |
|
| 301 |
def initialize_models(self):
|
| 302 |
"""Initialize the speaker encoder model"""
|
|
|
|
| 305 |
print(f"Using device: {device_str}")
|
| 306 |
|
| 307 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
|
|
|
| 308 |
|
| 309 |
+
# Try to load model with timeout
|
| 310 |
+
import threading
|
| 311 |
+
load_success = [False]
|
| 312 |
+
|
| 313 |
+
def load_model_thread():
|
| 314 |
+
try:
|
| 315 |
+
success = self.encoder.load_model()
|
| 316 |
+
load_success[0] = success
|
| 317 |
+
except Exception as e:
|
| 318 |
+
print(f"Error in model loading thread: {e}")
|
| 319 |
+
|
| 320 |
+
# Start loading in a thread with timeout
|
| 321 |
+
load_thread = threading.Thread(target=load_model_thread)
|
| 322 |
+
load_thread.daemon = True
|
| 323 |
+
load_thread.start()
|
| 324 |
+
load_thread.join(timeout=60) # 60 second timeout for model loading
|
| 325 |
+
|
| 326 |
+
if load_success[0]:
|
| 327 |
self.audio_processor = AudioProcessor(self.encoder)
|
| 328 |
self.speaker_detector = SpeakerChangeDetector(
|
| 329 |
embedding_dim=self.encoder.embedding_dim,
|
|
|
|
| 333 |
print("ECAPA-TDNN model loaded successfully!")
|
| 334 |
return True
|
| 335 |
else:
|
| 336 |
+
print("Failed to load ECAPA-TDNN model or timeout occurred")
|
| 337 |
+
return self._initialize_fallback()
|
| 338 |
+
|
| 339 |
except Exception as e:
|
| 340 |
print(f"Model initialization error: {e}")
|
| 341 |
+
import traceback
|
| 342 |
+
traceback.print_exc()
|
| 343 |
+
return self._initialize_fallback()
|
| 344 |
+
|
| 345 |
+
def _initialize_fallback(self):
|
| 346 |
+
"""Initialize fallback mode when model loading fails"""
|
| 347 |
+
try:
|
| 348 |
+
print("Initializing fallback mode with simple speaker detection...")
|
| 349 |
+
# Create a simple embedding dimension
|
| 350 |
+
embedding_dim = 64
|
| 351 |
+
|
| 352 |
+
# Create a dummy encoder that produces random embeddings
|
| 353 |
+
class DummyEncoder:
|
| 354 |
+
def __init__(self):
|
| 355 |
+
self.embedding_dim = embedding_dim
|
| 356 |
+
self.model_loaded = True
|
| 357 |
+
|
| 358 |
+
def embed_utterance(self, audio, sr=16000):
|
| 359 |
+
# Simple energy-based pseudo-embedding
|
| 360 |
+
if isinstance(audio, np.ndarray):
|
| 361 |
+
# Create a simple feature vector (not a real embedding)
|
| 362 |
+
energy = np.mean(np.abs(audio))
|
| 363 |
+
# Create a pseudo-random but consistent embedding based on audio energy
|
| 364 |
+
np.random.seed(int(energy * 1000))
|
| 365 |
+
return np.random.rand(embedding_dim)
|
| 366 |
+
return np.random.rand(embedding_dim)
|
| 367 |
+
|
| 368 |
+
# Set up system with fallback components
|
| 369 |
+
self.encoder = DummyEncoder()
|
| 370 |
+
self.audio_processor = AudioProcessor(self.encoder)
|
| 371 |
+
self.speaker_detector = SpeakerChangeDetector(
|
| 372 |
+
embedding_dim=embedding_dim,
|
| 373 |
+
change_threshold=self.change_threshold,
|
| 374 |
+
max_speakers=2 # Limit speakers in fallback mode
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
print("Fallback mode initialized - limited functionality!")
|
| 378 |
+
return True
|
| 379 |
+
|
| 380 |
+
except Exception as e:
|
| 381 |
+
print(f"Even fallback initialization failed: {e}")
|
| 382 |
return False
|
| 383 |
|
| 384 |
def live_text_detected(self, text):
|
|
|
|
| 407 |
if text:
|
| 408 |
try:
|
| 409 |
bytes_data = self.recorder.last_transcription_bytes
|
| 410 |
+
self.sentence_queue.put((text, bytes_data), timeout=1.0) # Added timeout
|
| 411 |
+
with self._state_lock:
|
| 412 |
+
self.pending_sentences.append(text)
|
| 413 |
except Exception as e:
|
| 414 |
print(f"Error processing final text: {e}")
|
| 415 |
|
|
|
|
| 425 |
# Extract speaker embedding
|
| 426 |
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
|
| 427 |
|
| 428 |
+
with self._state_lock:
|
| 429 |
+
# Store sentence and embedding
|
| 430 |
+
self.full_sentences.append((text, speaker_embedding))
|
| 431 |
+
|
| 432 |
+
# Fill in missing speaker assignments
|
| 433 |
+
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
|
| 434 |
+
self.sentence_speakers.append(0)
|
| 435 |
+
|
| 436 |
+
# Detect speaker changes
|
| 437 |
+
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
|
| 438 |
+
self.sentence_speakers.append(speaker_id)
|
| 439 |
+
|
| 440 |
+
# Remove from pending
|
| 441 |
+
if text in self.pending_sentences:
|
| 442 |
+
self.pending_sentences.remove(text)
|
| 443 |
+
|
| 444 |
+
# Update conversation display
|
| 445 |
+
self.current_conversation = self.get_formatted_conversation()
|
| 446 |
|
| 447 |
except queue.Empty:
|
| 448 |
continue
|
| 449 |
except Exception as e:
|
| 450 |
print(f"Error processing sentence: {e}")
|
| 451 |
+
import traceback
|
| 452 |
+
traceback.print_exc()
|
| 453 |
|
| 454 |
def start_recording(self):
|
| 455 |
"""Start the recording and transcription process"""
|
|
|
|
| 477 |
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
| 478 |
'buffer_size': BUFFER_SIZE,
|
| 479 |
'sample_rate': SAMPLE_RATE,
|
| 480 |
+
'external_audio': True, # Signal that we'll provide audio
|
| 481 |
}
|
| 482 |
|
| 483 |
+
# Make sure we're not running already
|
| 484 |
+
if hasattr(self, 'is_running') and self.is_running:
|
| 485 |
+
self.stop_recording()
|
| 486 |
+
# Short pause to ensure cleanup completes
|
| 487 |
+
time.sleep(0.5)
|
| 488 |
+
|
| 489 |
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 490 |
|
| 491 |
+
# Reset state
|
| 492 |
+
with self._state_lock:
|
| 493 |
+
self.pending_sentences = []
|
| 494 |
+
self.last_realtime_text = ""
|
| 495 |
+
|
| 496 |
# Start sentence processing thread
|
| 497 |
self.is_running = True
|
| 498 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
|
|
|
| 505 |
return "Recording started successfully! FastRTC audio input ready."
|
| 506 |
|
| 507 |
except Exception as e:
|
| 508 |
+
self.is_running = False
|
| 509 |
+
import traceback
|
| 510 |
+
traceback.print_exc()
|
| 511 |
+
return f"Error starting recording: {str(e)}"
|
| 512 |
|
| 513 |
def run_transcription(self):
|
| 514 |
"""Run the transcription loop"""
|
|
|
|
| 523 |
self.is_running = False
|
| 524 |
if self.recorder:
|
| 525 |
self.recorder.stop()
|
| 526 |
+
|
| 527 |
+
# Wait for threads to finish
|
| 528 |
+
self._cleanup_resources()
|
| 529 |
+
|
| 530 |
return "Recording stopped!"
|
| 531 |
|
| 532 |
+
def _cleanup_resources(self):
|
| 533 |
+
"""Clean up resources and threads"""
|
| 534 |
+
try:
|
| 535 |
+
# Wait for threads to stop gracefully
|
| 536 |
+
if hasattr(self, 'sentence_thread') and self.sentence_thread is not None:
|
| 537 |
+
if self.sentence_thread.is_alive():
|
| 538 |
+
self.sentence_thread.join(timeout=3.0)
|
| 539 |
+
|
| 540 |
+
if hasattr(self, 'transcription_thread') and self.transcription_thread is not None:
|
| 541 |
+
if self.transcription_thread.is_alive():
|
| 542 |
+
self.transcription_thread.join(timeout=3.0)
|
| 543 |
+
|
| 544 |
+
# Clean up memory
|
| 545 |
+
with self._state_lock:
|
| 546 |
+
# Limit history size to prevent memory leaks
|
| 547 |
+
if len(self.full_sentences) > 1000:
|
| 548 |
+
self.full_sentences = self.full_sentences[-1000:]
|
| 549 |
+
if len(self.sentence_speakers) > 1000:
|
| 550 |
+
self.sentence_speakers = self.sentence_speakers[-1000:]
|
| 551 |
+
|
| 552 |
+
# Clear audio buffer
|
| 553 |
+
with self._audio_lock:
|
| 554 |
+
self.audio_buffer = []
|
| 555 |
+
|
| 556 |
+
# Clear queue
|
| 557 |
+
while not self.sentence_queue.empty():
|
| 558 |
+
try:
|
| 559 |
+
self.sentence_queue.get_nowait()
|
| 560 |
+
except:
|
| 561 |
+
pass
|
| 562 |
+
|
| 563 |
+
except Exception as e:
|
| 564 |
+
print(f"Error during resource cleanup: {e}")
|
| 565 |
+
import traceback
|
| 566 |
+
traceback.print_exc()
|
| 567 |
+
|
| 568 |
def clear_conversation(self):
|
| 569 |
"""Clear all conversation data"""
|
| 570 |
self.full_sentences = []
|
|
|
|
| 673 |
else:
|
| 674 |
audio_bytes = audio_data
|
| 675 |
|
| 676 |
+
# Use the recorder's internal buffer mechanism
|
| 677 |
+
if hasattr(self.recorder, 'feed_audio') and callable(self.recorder.feed_audio):
|
| 678 |
+
self.recorder.feed_audio(audio_bytes)
|
| 679 |
+
else:
|
| 680 |
+
# Fallback: Direct access to the underlying buffer if the method doesn't exist
|
| 681 |
+
self.audio_buffer.append(audio_bytes)
|
| 682 |
+
# Process buffered audio when enough is accumulated
|
| 683 |
+
if len(self.audio_buffer) > 5: # Process in small batches
|
| 684 |
+
combined = b''.join(self.audio_buffer)
|
| 685 |
+
if hasattr(self.recorder, '_process_audio'):
|
| 686 |
+
self.recorder._process_audio(combined)
|
| 687 |
+
self.audio_buffer = []
|
| 688 |
|
| 689 |
except Exception as e:
|
| 690 |
+
print(f"Error feeding audio data: {str(e)}")
|
| 691 |
+
import traceback
|
| 692 |
+
traceback.print_exc()
|
| 693 |
|
| 694 |
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
| 695 |
"""Process audio chunk from FastRTC input"""
|
|
|
|
| 697 |
return
|
| 698 |
|
| 699 |
try:
|
| 700 |
+
with self._audio_lock:
|
| 701 |
+
# Use the normalized audio function
|
| 702 |
+
audio_int16 = self._normalize_audio_format(audio_data, target_dtype=np.int16, target_sample_rate=SAMPLE_RATE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 703 |
|
| 704 |
+
# Check if we got valid audio
|
| 705 |
+
if audio_int16.size == 0:
|
| 706 |
+
print("Warning: Empty audio chunk received")
|
| 707 |
+
return
|
| 708 |
|
| 709 |
+
# Resample if needed
|
| 710 |
+
if sample_rate != SAMPLE_RATE:
|
| 711 |
+
audio_int16 = self._resample_audio(audio_int16, sample_rate, SAMPLE_RATE)
|
| 712 |
|
| 713 |
+
# Convert to bytes for feeding to recorder
|
| 714 |
+
audio_bytes = audio_int16.tobytes()
|
| 715 |
+
|
| 716 |
+
# Feed to recorder
|
| 717 |
+
self.feed_audio_data(audio_bytes)
|
| 718 |
|
| 719 |
except Exception as e:
|
| 720 |
+
print(f"Error processing audio chunk: {str(e)}")
|
| 721 |
+
import traceback
|
| 722 |
+
traceback.print_exc()
|
| 723 |
+
|
| 724 |
def _resample_audio(self, audio, orig_sr, target_sr):
|
| 725 |
"""Resample audio to target sample rate"""
|
| 726 |
try:
|
|
|
|
| 741 |
print(f"Error resampling audio: {e}")
|
| 742 |
return audio
|
| 743 |
|
| 744 |
+
def _normalize_audio_format(self, audio_data, target_dtype=np.int16, target_sample_rate=SAMPLE_RATE):
|
| 745 |
+
"""Normalize audio data to consistent format
|
| 746 |
+
|
| 747 |
+
Args:
|
| 748 |
+
audio_data: Input audio as numpy array or bytes
|
| 749 |
+
target_dtype: Target data type (np.int16 or np.float32)
|
| 750 |
+
target_sample_rate: Target sample rate
|
| 751 |
+
|
| 752 |
+
Returns:
|
| 753 |
+
Normalized audio as numpy array in requested format
|
| 754 |
+
"""
|
| 755 |
+
try:
|
| 756 |
+
# Convert bytes to numpy if needed
|
| 757 |
+
if isinstance(audio_data, bytes):
|
| 758 |
+
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
| 759 |
+
elif isinstance(audio_data, (list, tuple)):
|
| 760 |
+
audio_array = np.array(audio_data)
|
| 761 |
+
else:
|
| 762 |
+
audio_array = audio_data
|
| 763 |
+
|
| 764 |
+
# Convert data type as needed
|
| 765 |
+
if target_dtype == np.int16 and audio_array.dtype != np.int16:
|
| 766 |
+
if audio_array.dtype == np.float32 or audio_array.dtype == np.float64:
|
| 767 |
+
# Check if normalized to [-1, 1] range
|
| 768 |
+
if np.max(np.abs(audio_array)) <= 1.0:
|
| 769 |
+
audio_array = (audio_array * 32767).astype(np.int16)
|
| 770 |
+
else:
|
| 771 |
+
audio_array = audio_array.astype(np.int16)
|
| 772 |
+
else:
|
| 773 |
+
audio_array = audio_array.astype(np.int16)
|
| 774 |
+
elif target_dtype == np.float32 and audio_array.dtype != np.float32:
|
| 775 |
+
if audio_array.dtype == np.int16:
|
| 776 |
+
audio_array = audio_array.astype(np.float32) / 32768.0
|
| 777 |
+
else:
|
| 778 |
+
audio_array = audio_array.astype(np.float32)
|
| 779 |
+
|
| 780 |
+
# Ensure mono audio
|
| 781 |
+
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
| 782 |
+
audio_array = np.mean(audio_array, axis=1)
|
| 783 |
+
|
| 784 |
+
# Reshape if needed
|
| 785 |
+
if len(audio_array.shape) == 1:
|
| 786 |
+
if target_dtype == np.int16:
|
| 787 |
+
audio_array = np.expand_dims(audio_array, 0)
|
| 788 |
+
|
| 789 |
+
return audio_array
|
| 790 |
+
|
| 791 |
+
except Exception as e:
|
| 792 |
+
print(f"Error normalizing audio format: {e}")
|
| 793 |
+
import traceback
|
| 794 |
+
traceback.print_exc()
|
| 795 |
+
# Return empty array of correct type as fallback
|
| 796 |
+
return np.array([], dtype=target_dtype)
|
| 797 |
+
|
| 798 |
|
| 799 |
# FastRTC Audio Handler for Real-time Diarization
|
| 800 |
|
|
|
|
| 802 |
def __init__(self, diarization_system):
|
| 803 |
super().__init__()
|
| 804 |
self.diarization_system = diarization_system
|
| 805 |
+
self.audio_queue = asyncio.Queue(maxsize=100) # Use asyncio queue
|
| 806 |
self.is_processing = False
|
| 807 |
self.sample_rate = 16000 # Default sample rate
|
| 808 |
+
self.processing_task = None
|
| 809 |
|
| 810 |
def copy(self):
|
| 811 |
"""Return a fresh handler for each new stream connection"""
|
|
|
|
| 829 |
else:
|
| 830 |
audio_data = frame
|
| 831 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 832 |
# Get sample rate from frame if available
|
| 833 |
sample_rate = getattr(frame, 'sample_rate', self.sample_rate)
|
| 834 |
|
| 835 |
+
# Add to queue - non-blocking with timeout
|
| 836 |
+
try:
|
| 837 |
+
# Use put_nowait with try/except to avoid blocking
|
| 838 |
+
await asyncio.wait_for(
|
| 839 |
+
self.audio_queue.put((audio_data, sample_rate)),
|
| 840 |
+
timeout=0.1
|
| 841 |
+
)
|
| 842 |
+
except asyncio.TimeoutError:
|
| 843 |
+
# Queue is full, drop this chunk
|
| 844 |
+
print("Warning: Audio queue full, dropping frame")
|
| 845 |
+
return
|
| 846 |
|
| 847 |
except Exception as e:
|
| 848 |
print(f"Error in FastRTC audio receive: {e}")
|
| 849 |
import traceback
|
| 850 |
traceback.print_exc()
|
| 851 |
|
| 852 |
+
async def _process_audio_loop(self):
|
| 853 |
+
"""Background task to process audio from queue"""
|
| 854 |
+
while self.is_processing:
|
| 855 |
+
try:
|
| 856 |
+
# Get from queue with timeout to allow checking is_processing flag
|
| 857 |
+
try:
|
| 858 |
+
audio_data, sample_rate = await asyncio.wait_for(
|
| 859 |
+
self.audio_queue.get(),
|
| 860 |
+
timeout=0.5
|
| 861 |
+
)
|
| 862 |
+
except asyncio.TimeoutError:
|
| 863 |
+
# No audio available, check if we should keep running
|
| 864 |
+
continue
|
| 865 |
+
|
| 866 |
+
# Convert to numpy array if needed
|
| 867 |
+
if isinstance(audio_data, bytes):
|
| 868 |
+
# Convert bytes to numpy array (assuming 16-bit PCM)
|
| 869 |
+
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
| 870 |
+
# Normalize to float32 range [-1, 1]
|
| 871 |
+
audio_array = audio_array.astype(np.float32) / 32768.0
|
| 872 |
+
elif isinstance(audio_data, (list, tuple)):
|
| 873 |
+
audio_array = np.array(audio_data, dtype=np.float32)
|
| 874 |
+
elif isinstance(audio_data, np.ndarray):
|
| 875 |
+
audio_array = audio_array.astype(np.float32)
|
| 876 |
+
else:
|
| 877 |
+
print(f"Unknown audio data type: {type(audio_data)}")
|
| 878 |
+
continue
|
| 879 |
+
|
| 880 |
+
# Ensure mono audio
|
| 881 |
+
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
| 882 |
+
audio_array = np.mean(audio_array, axis=1)
|
| 883 |
+
|
| 884 |
+
# Ensure 1D array
|
| 885 |
+
if len(audio_array.shape) > 1:
|
| 886 |
+
audio_array = audio_array.flatten()
|
| 887 |
+
|
| 888 |
+
# Process audio through thread pool to avoid blocking event loop
|
| 889 |
+
await self.process_audio_async(audio_array, sample_rate)
|
| 890 |
+
|
| 891 |
+
# Mark as done
|
| 892 |
+
self.audio_queue.task_done()
|
| 893 |
+
|
| 894 |
+
except Exception as e:
|
| 895 |
+
print(f"Error in audio processing loop: {e}")
|
| 896 |
+
import traceback
|
| 897 |
+
traceback.print_exc()
|
| 898 |
+
# Short sleep to avoid tight loop
|
| 899 |
+
await asyncio.sleep(0.1)
|
| 900 |
+
|
| 901 |
async def process_audio_async(self, audio_data, sample_rate=16000):
|
| 902 |
"""Process audio data asynchronously"""
|
| 903 |
try:
|
|
|
|
| 917 |
print("FastRTC stream started")
|
| 918 |
self.is_processing = True
|
| 919 |
|
| 920 |
+
# Start background processing task
|
| 921 |
+
self.processing_task = asyncio.create_task(self._process_audio_loop())
|
| 922 |
+
|
| 923 |
async def shutdown(self) -> None:
|
| 924 |
"""Clean up any resources when the stream ends"""
|
| 925 |
print("FastRTC stream shutting down")
|
| 926 |
self.is_processing = False
|
| 927 |
+
|
| 928 |
+
# Wait for processing task to finish
|
| 929 |
+
if self.processing_task:
|
| 930 |
+
try:
|
| 931 |
+
# Cancel and wait for task
|
| 932 |
+
self.processing_task.cancel()
|
| 933 |
+
await asyncio.wait([self.processing_task], timeout=2.0)
|
| 934 |
+
except (asyncio.CancelledError, Exception) as e:
|
| 935 |
+
print(f"Error cancelling audio processing task: {e}")
|
| 936 |
+
|
| 937 |
+
# Clear queue
|
| 938 |
+
while not self.audio_queue.empty():
|
| 939 |
+
try:
|
| 940 |
+
self.audio_queue.get_nowait()
|
| 941 |
+
self.audio_queue.task_done()
|
| 942 |
+
except:
|
| 943 |
+
pass
|
| 944 |
|
| 945 |
|
| 946 |
# Global instances
|