Spaces:
Sleeping
Sleeping
Commit
·
78869ff
1
Parent(s):
b3cc831
Code fixing
Browse files
app.py
CHANGED
|
@@ -10,16 +10,12 @@ import torchaudio
|
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
from fastapi import FastAPI
|
|
|
|
| 13 |
import json
|
| 14 |
import io
|
| 15 |
import wave
|
| 16 |
import asyncio
|
| 17 |
import uvicorn
|
| 18 |
-
import logging
|
| 19 |
-
|
| 20 |
-
# Configure logging to reduce noise
|
| 21 |
-
logging.getLogger("uvicorn").setLevel(logging.WARNING)
|
| 22 |
-
logging.getLogger("gradio").setLevel(logging.WARNING)
|
| 23 |
|
| 24 |
# Simplified configuration parameters
|
| 25 |
SILENCE_THRESHS = [0, 0.4]
|
|
@@ -76,15 +72,23 @@ class SpeechBrainEncoder:
|
|
| 76 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 77 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
def load_model(self):
|
| 80 |
-
"""Load the ECAPA-TDNN model
|
| 81 |
try:
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
except ImportError:
|
| 86 |
-
print("SpeechBrain not available. Using fallback embedding model.")
|
| 87 |
-
return self._load_fallback_model()
|
| 88 |
|
| 89 |
self.model = EncoderClassifier.from_hparams(
|
| 90 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
|
@@ -93,17 +97,10 @@ class SpeechBrainEncoder:
|
|
| 93 |
)
|
| 94 |
|
| 95 |
self.model_loaded = True
|
| 96 |
-
print("ECAPA-TDNN model loaded successfully!")
|
| 97 |
return True
|
| 98 |
except Exception as e:
|
| 99 |
print(f"Error loading ECAPA-TDNN model: {e}")
|
| 100 |
-
return
|
| 101 |
-
|
| 102 |
-
def _load_fallback_model(self):
|
| 103 |
-
"""Fallback to a simple embedding model if SpeechBrain is not available"""
|
| 104 |
-
print("Using fallback embedding model (simple spectral features)")
|
| 105 |
-
self.model_loaded = True
|
| 106 |
-
return True
|
| 107 |
|
| 108 |
def embed_utterance(self, audio, sr=16000):
|
| 109 |
"""Extract speaker embedding from audio"""
|
|
@@ -111,48 +108,21 @@ class SpeechBrainEncoder:
|
|
| 111 |
raise ValueError("Model not loaded. Call load_model() first.")
|
| 112 |
|
| 113 |
try:
|
| 114 |
-
if
|
| 115 |
-
|
| 116 |
-
if isinstance(audio, np.ndarray):
|
| 117 |
-
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
|
| 118 |
-
else:
|
| 119 |
-
waveform = audio.unsqueeze(0)
|
| 120 |
-
|
| 121 |
-
if sr != 16000:
|
| 122 |
-
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
| 123 |
-
|
| 124 |
-
with torch.no_grad():
|
| 125 |
-
embedding = self.model.encode_batch(waveform)
|
| 126 |
-
|
| 127 |
-
return embedding.squeeze().cpu().numpy()
|
| 128 |
else:
|
| 129 |
-
|
| 130 |
-
return self._extract_simple_features(audio)
|
| 131 |
-
except Exception as e:
|
| 132 |
-
print(f"Error extracting embedding: {e}")
|
| 133 |
-
return self._extract_simple_features(audio)
|
| 134 |
-
|
| 135 |
-
def _extract_simple_features(self, audio):
|
| 136 |
-
"""Simple fallback feature extraction"""
|
| 137 |
-
try:
|
| 138 |
-
# Ensure audio is numpy array
|
| 139 |
-
if isinstance(audio, torch.Tensor):
|
| 140 |
-
audio = audio.numpy()
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
magnitude = np.abs(fft)
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
features = features / (np.linalg.norm(features) + 1e-8)
|
| 151 |
-
|
| 152 |
-
return features.astype(np.float32)
|
| 153 |
except Exception as e:
|
| 154 |
-
print(f"Error
|
| 155 |
-
return np.
|
| 156 |
|
| 157 |
|
| 158 |
class AudioProcessor:
|
|
@@ -321,7 +291,6 @@ class RealtimeSpeakerDiarization:
|
|
| 321 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 322 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 323 |
self.current_conversation = ""
|
| 324 |
-
self.audio_buffer = []
|
| 325 |
|
| 326 |
def initialize_models(self):
|
| 327 |
"""Initialize the speaker encoder model"""
|
|
@@ -339,10 +308,10 @@ class RealtimeSpeakerDiarization:
|
|
| 339 |
change_threshold=self.change_threshold,
|
| 340 |
max_speakers=self.max_speakers
|
| 341 |
)
|
| 342 |
-
print("
|
| 343 |
return True
|
| 344 |
else:
|
| 345 |
-
print("Failed to load
|
| 346 |
return False
|
| 347 |
except Exception as e:
|
| 348 |
print(f"Model initialization error: {e}")
|
|
@@ -362,31 +331,19 @@ class RealtimeSpeakerDiarization:
|
|
| 362 |
self.last_realtime_text = text
|
| 363 |
|
| 364 |
if prob_sentence_end and FAST_SENTENCE_END:
|
| 365 |
-
|
| 366 |
-
self.recorder.stop()
|
| 367 |
elif prob_sentence_end:
|
| 368 |
-
|
| 369 |
-
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
|
| 370 |
else:
|
| 371 |
-
|
| 372 |
-
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
|
| 373 |
|
| 374 |
def process_final_text(self, text):
|
| 375 |
"""Process final transcribed text with speaker embedding"""
|
| 376 |
text = text.strip()
|
| 377 |
if text:
|
| 378 |
try:
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
self.sentence_queue.put((text, bytes_data))
|
| 382 |
-
else:
|
| 383 |
-
# Use audio buffer as fallback
|
| 384 |
-
if self.audio_buffer:
|
| 385 |
-
audio_data = np.concatenate(self.audio_buffer)
|
| 386 |
-
bytes_data = audio_data.tobytes()
|
| 387 |
-
self.sentence_queue.put((text, bytes_data))
|
| 388 |
-
self.audio_buffer = [] # Clear buffer after use
|
| 389 |
-
|
| 390 |
self.pending_sentences.append(text)
|
| 391 |
except Exception as e:
|
| 392 |
print(f"Error processing final text: {e}")
|
|
@@ -432,51 +389,40 @@ class RealtimeSpeakerDiarization:
|
|
| 432 |
return "Please initialize models first!"
|
| 433 |
|
| 434 |
try:
|
| 435 |
-
#
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 459 |
-
'on_realtime_transcription_update': self.live_text_detected,
|
| 460 |
-
'beam_size': FINAL_BEAM_SIZE,
|
| 461 |
-
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
| 462 |
-
'buffer_size': BUFFER_SIZE,
|
| 463 |
-
'sample_rate': SAMPLE_RATE,
|
| 464 |
-
}
|
| 465 |
-
|
| 466 |
-
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 467 |
|
| 468 |
# Start sentence processing thread
|
| 469 |
self.is_running = True
|
| 470 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 471 |
self.sentence_thread.start()
|
| 472 |
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
else:
|
| 479 |
-
return "Simulation mode active. Speaker diarization ready for audio input."
|
| 480 |
|
| 481 |
except Exception as e:
|
| 482 |
return f"Error starting recording: {e}"
|
|
@@ -484,7 +430,7 @@ class RealtimeSpeakerDiarization:
|
|
| 484 |
def run_transcription(self):
|
| 485 |
"""Run the transcription loop"""
|
| 486 |
try:
|
| 487 |
-
while self.is_running
|
| 488 |
self.recorder.text(self.process_final_text)
|
| 489 |
except Exception as e:
|
| 490 |
print(f"Transcription error: {e}")
|
|
@@ -493,10 +439,7 @@ class RealtimeSpeakerDiarization:
|
|
| 493 |
"""Stop the recording process"""
|
| 494 |
self.is_running = False
|
| 495 |
if self.recorder:
|
| 496 |
-
|
| 497 |
-
self.recorder.stop()
|
| 498 |
-
except:
|
| 499 |
-
pass
|
| 500 |
return "Recording stopped!"
|
| 501 |
|
| 502 |
def clear_conversation(self):
|
|
@@ -507,7 +450,6 @@ class RealtimeSpeakerDiarization:
|
|
| 507 |
self.displayed_text = ""
|
| 508 |
self.last_realtime_text = ""
|
| 509 |
self.current_conversation = "Conversation cleared!"
|
| 510 |
-
self.audio_buffer = []
|
| 511 |
|
| 512 |
if self.speaker_detector:
|
| 513 |
self.speaker_detector = SpeakerChangeDetector(
|
|
@@ -589,42 +531,43 @@ class RealtimeSpeakerDiarization:
|
|
| 589 |
return f"Error getting status: {e}"
|
| 590 |
|
| 591 |
def process_audio(self, audio_data):
|
| 592 |
-
"""Process audio data from
|
| 593 |
-
if not self.is_running:
|
| 594 |
return
|
| 595 |
|
| 596 |
try:
|
| 597 |
-
#
|
| 598 |
-
|
| 599 |
-
sample_rate, audio_array = audio_data
|
| 600 |
-
else:
|
| 601 |
-
audio_array = audio_data
|
| 602 |
-
sample_rate = SAMPLE_RATE
|
| 603 |
|
| 604 |
# Convert to int16 format
|
| 605 |
if audio_array.dtype != np.int16:
|
| 606 |
-
|
| 607 |
-
audio_array = (audio_array * 32767).astype(np.int16)
|
| 608 |
-
else:
|
| 609 |
-
audio_array = audio_array.astype(np.int16)
|
| 610 |
-
|
| 611 |
-
# Store in buffer for later processing
|
| 612 |
-
self.audio_buffer.append(audio_array)
|
| 613 |
|
| 614 |
-
#
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
# Simulate transcription for demonstration
|
| 619 |
-
if len(combined_audio) > SAMPLE_RATE: # At least 1 second of audio
|
| 620 |
-
# In a real implementation, this would be transcribed text
|
| 621 |
-
demo_text = f"Sample speech segment {len(self.full_sentences) + 1}"
|
| 622 |
-
self.process_final_text(demo_text)
|
| 623 |
-
|
| 624 |
-
self.audio_buffer = [] # Clear buffer
|
| 625 |
-
|
| 626 |
except Exception as e:
|
| 627 |
-
print(f"Error processing audio: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
|
| 629 |
|
| 630 |
# Global instance
|
|
@@ -670,6 +613,61 @@ def get_status():
|
|
| 670 |
return diarization_system.get_status_info()
|
| 671 |
|
| 672 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 673 |
# Create Gradio interface
|
| 674 |
def create_interface():
|
| 675 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as interface:
|
|
@@ -678,13 +676,31 @@ def create_interface():
|
|
| 678 |
|
| 679 |
with gr.Row():
|
| 680 |
with gr.Column(scale=2):
|
| 681 |
-
# Audio
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 688 |
|
| 689 |
# Main conversation display
|
| 690 |
conversation_output = gr.HTML(
|
|
@@ -735,9 +751,11 @@ def create_interface():
|
|
| 735 |
gr.Markdown("""
|
| 736 |
1. Click **Initialize System** to load models
|
| 737 |
2. Click **Start Recording** to begin processing
|
| 738 |
-
3.
|
| 739 |
-
4.
|
| 740 |
-
5.
|
|
|
|
|
|
|
| 741 |
""")
|
| 742 |
|
| 743 |
# Speaker color legend
|
|
@@ -747,13 +765,20 @@ def create_interface():
|
|
| 747 |
color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
|
| 748 |
|
| 749 |
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 757 |
|
| 758 |
# Auto-refresh conversation and status
|
| 759 |
def refresh_display():
|
|
@@ -822,13 +847,6 @@ def create_interface():
|
|
| 822 |
outputs=[status_output]
|
| 823 |
)
|
| 824 |
|
| 825 |
-
# Connect audio input to processing function
|
| 826 |
-
audio_input.stream(
|
| 827 |
-
process_audio_stream,
|
| 828 |
-
inputs=[audio_input],
|
| 829 |
-
outputs=[conversation_output]
|
| 830 |
-
)
|
| 831 |
-
|
| 832 |
# Auto-refresh every 2 seconds when recording
|
| 833 |
refresh_timer = gr.Timer(2.0)
|
| 834 |
refresh_timer.tick(
|
|
@@ -848,6 +866,16 @@ gradio_interface = create_interface()
|
|
| 848 |
# 3) Mount Gradio onto FastAPI at root
|
| 849 |
app = gr.mount_gradio_app(app, gradio_interface, path="/")
|
| 850 |
|
| 851 |
-
# 4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 852 |
if __name__ == "__main__":
|
| 853 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
from fastapi import FastAPI
|
| 13 |
+
from fastrtc import Stream, AsyncStreamHandler, ReplyOnPause, get_cloudflare_turn_credentials_async, get_cloudflare_turn_credentials
|
| 14 |
import json
|
| 15 |
import io
|
| 16 |
import wave
|
| 17 |
import asyncio
|
| 18 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# Simplified configuration parameters
|
| 21 |
SILENCE_THRESHS = [0, 0.4]
|
|
|
|
| 72 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 73 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 74 |
|
| 75 |
+
def _download_model(self):
|
| 76 |
+
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
|
| 77 |
+
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
|
| 78 |
+
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
|
| 79 |
+
|
| 80 |
+
if not os.path.exists(model_path):
|
| 81 |
+
print(f"Downloading ECAPA-TDNN model to {model_path}...")
|
| 82 |
+
urllib.request.urlretrieve(model_url, model_path)
|
| 83 |
+
|
| 84 |
+
return model_path
|
| 85 |
+
|
| 86 |
def load_model(self):
|
| 87 |
+
"""Load the ECAPA-TDNN model"""
|
| 88 |
try:
|
| 89 |
+
from speechbrain.pretrained import EncoderClassifier
|
| 90 |
+
|
| 91 |
+
model_path = self._download_model()
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
self.model = EncoderClassifier.from_hparams(
|
| 94 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
|
|
|
| 97 |
)
|
| 98 |
|
| 99 |
self.model_loaded = True
|
|
|
|
| 100 |
return True
|
| 101 |
except Exception as e:
|
| 102 |
print(f"Error loading ECAPA-TDNN model: {e}")
|
| 103 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
def embed_utterance(self, audio, sr=16000):
|
| 106 |
"""Extract speaker embedding from audio"""
|
|
|
|
| 108 |
raise ValueError("Model not loaded. Call load_model() first.")
|
| 109 |
|
| 110 |
try:
|
| 111 |
+
if isinstance(audio, np.ndarray):
|
| 112 |
+
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
else:
|
| 114 |
+
waveform = audio.unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
if sr != 16000:
|
| 117 |
+
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
|
|
|
| 118 |
|
| 119 |
+
with torch.no_grad():
|
| 120 |
+
embedding = self.model.encode_batch(waveform)
|
| 121 |
+
|
| 122 |
+
return embedding.squeeze().cpu().numpy()
|
|
|
|
|
|
|
|
|
|
| 123 |
except Exception as e:
|
| 124 |
+
print(f"Error extracting embedding: {e}")
|
| 125 |
+
return np.zeros(self.embedding_dim)
|
| 126 |
|
| 127 |
|
| 128 |
class AudioProcessor:
|
|
|
|
| 291 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 292 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 293 |
self.current_conversation = ""
|
|
|
|
| 294 |
|
| 295 |
def initialize_models(self):
|
| 296 |
"""Initialize the speaker encoder model"""
|
|
|
|
| 308 |
change_threshold=self.change_threshold,
|
| 309 |
max_speakers=self.max_speakers
|
| 310 |
)
|
| 311 |
+
print("ECAPA-TDNN model loaded successfully!")
|
| 312 |
return True
|
| 313 |
else:
|
| 314 |
+
print("Failed to load ECAPA-TDNN model")
|
| 315 |
return False
|
| 316 |
except Exception as e:
|
| 317 |
print(f"Model initialization error: {e}")
|
|
|
|
| 331 |
self.last_realtime_text = text
|
| 332 |
|
| 333 |
if prob_sentence_end and FAST_SENTENCE_END:
|
| 334 |
+
self.recorder.stop()
|
|
|
|
| 335 |
elif prob_sentence_end:
|
| 336 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
|
|
|
|
| 337 |
else:
|
| 338 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
|
|
|
|
| 339 |
|
| 340 |
def process_final_text(self, text):
|
| 341 |
"""Process final transcribed text with speaker embedding"""
|
| 342 |
text = text.strip()
|
| 343 |
if text:
|
| 344 |
try:
|
| 345 |
+
bytes_data = self.recorder.last_transcription_bytes
|
| 346 |
+
self.sentence_queue.put((text, bytes_data))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
self.pending_sentences.append(text)
|
| 348 |
except Exception as e:
|
| 349 |
print(f"Error processing final text: {e}")
|
|
|
|
| 389 |
return "Please initialize models first!"
|
| 390 |
|
| 391 |
try:
|
| 392 |
+
# Setup recorder configuration for WebRTC input
|
| 393 |
+
recorder_config = {
|
| 394 |
+
'spinner': False,
|
| 395 |
+
'use_microphone': False, # We'll feed audio manually
|
| 396 |
+
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 397 |
+
'language': TRANSCRIPTION_LANGUAGE,
|
| 398 |
+
'silero_sensitivity': SILERO_SENSITIVITY,
|
| 399 |
+
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
|
| 400 |
+
'post_speech_silence_duration': SILENCE_THRESHS[1],
|
| 401 |
+
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
|
| 402 |
+
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 403 |
+
'min_gap_between_recordings': 0,
|
| 404 |
+
'enable_realtime_transcription': True,
|
| 405 |
+
'realtime_processing_pause': 0,
|
| 406 |
+
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 407 |
+
'on_realtime_transcription_update': self.live_text_detected,
|
| 408 |
+
'beam_size': FINAL_BEAM_SIZE,
|
| 409 |
+
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
| 410 |
+
'buffer_size': BUFFER_SIZE,
|
| 411 |
+
'sample_rate': SAMPLE_RATE,
|
| 412 |
+
}
|
| 413 |
+
|
| 414 |
+
self.recorder = AudioToTextRecorder(**recorder_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
# Start sentence processing thread
|
| 417 |
self.is_running = True
|
| 418 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 419 |
self.sentence_thread.start()
|
| 420 |
|
| 421 |
+
# Start transcription thread
|
| 422 |
+
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 423 |
+
self.transcription_thread.start()
|
| 424 |
+
|
| 425 |
+
return "Recording started successfully! FastRTC audio input ready."
|
|
|
|
|
|
|
| 426 |
|
| 427 |
except Exception as e:
|
| 428 |
return f"Error starting recording: {e}"
|
|
|
|
| 430 |
def run_transcription(self):
|
| 431 |
"""Run the transcription loop"""
|
| 432 |
try:
|
| 433 |
+
while self.is_running:
|
| 434 |
self.recorder.text(self.process_final_text)
|
| 435 |
except Exception as e:
|
| 436 |
print(f"Transcription error: {e}")
|
|
|
|
| 439 |
"""Stop the recording process"""
|
| 440 |
self.is_running = False
|
| 441 |
if self.recorder:
|
| 442 |
+
self.recorder.stop()
|
|
|
|
|
|
|
|
|
|
| 443 |
return "Recording stopped!"
|
| 444 |
|
| 445 |
def clear_conversation(self):
|
|
|
|
| 450 |
self.displayed_text = ""
|
| 451 |
self.last_realtime_text = ""
|
| 452 |
self.current_conversation = "Conversation cleared!"
|
|
|
|
| 453 |
|
| 454 |
if self.speaker_detector:
|
| 455 |
self.speaker_detector = SpeakerChangeDetector(
|
|
|
|
| 531 |
return f"Error getting status: {e}"
|
| 532 |
|
| 533 |
def process_audio(self, audio_data):
|
| 534 |
+
"""Process audio data from FastRTC"""
|
| 535 |
+
if not self.is_running or not self.recorder:
|
| 536 |
return
|
| 537 |
|
| 538 |
try:
|
| 539 |
+
# Extract audio data from FastRTC format (sample_rate, numpy_array)
|
| 540 |
+
sample_rate, audio_array = audio_data
|
|
|
|
|
|
|
|
|
|
|
|
|
| 541 |
|
| 542 |
# Convert to int16 format
|
| 543 |
if audio_array.dtype != np.int16:
|
| 544 |
+
audio_array = (audio_array * 32767).astype(np.int16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 545 |
|
| 546 |
+
# Convert to bytes and feed to recorder
|
| 547 |
+
audio_bytes = audio_array.tobytes()
|
| 548 |
+
self.recorder.feed_audio(audio_bytes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
except Exception as e:
|
| 550 |
+
print(f"Error processing FastRTC audio: {e}")
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
# FastRTC Audio Handler
|
| 554 |
+
class DiarizationHandler(AsyncStreamHandler):
|
| 555 |
+
def __init__(self, diarization_system):
|
| 556 |
+
super().__init__()
|
| 557 |
+
self.diarization_system = diarization_system
|
| 558 |
+
|
| 559 |
+
def copy(self):
|
| 560 |
+
# Return a fresh handler for each new stream connection
|
| 561 |
+
return DiarizationHandler(self.diarization_system)
|
| 562 |
+
|
| 563 |
+
async def emit(self):
|
| 564 |
+
"""Not used in this implementation"""
|
| 565 |
+
return None
|
| 566 |
+
|
| 567 |
+
async def receive(self, data):
|
| 568 |
+
"""Receive audio data from FastRTC and process it"""
|
| 569 |
+
if self.diarization_system.is_running:
|
| 570 |
+
self.diarization_system.process_audio(data)
|
| 571 |
|
| 572 |
|
| 573 |
# Global instance
|
|
|
|
| 613 |
return diarization_system.get_status_info()
|
| 614 |
|
| 615 |
|
| 616 |
+
# Get Cloudflare TURN credentials for FastRTC
|
| 617 |
+
async def get_cloudflare_credentials():
|
| 618 |
+
# Check if HF_TOKEN is set in environment
|
| 619 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 620 |
+
|
| 621 |
+
# If not set, use a default Hugging Face token if available
|
| 622 |
+
if not hf_token:
|
| 623 |
+
# Log a warning that user should set their own token
|
| 624 |
+
print("Warning: HF_TOKEN environment variable not set. Please set your own Hugging Face token.")
|
| 625 |
+
# Try to use the Hugging Face token from the environment
|
| 626 |
+
from huggingface_hub import HfApi
|
| 627 |
+
try:
|
| 628 |
+
api = HfApi()
|
| 629 |
+
hf_token = api.token
|
| 630 |
+
if not hf_token:
|
| 631 |
+
print("Error: No Hugging Face token available. TURN relay may not work properly.")
|
| 632 |
+
except:
|
| 633 |
+
print("Error: Failed to get Hugging Face token. TURN relay may not work properly.")
|
| 634 |
+
|
| 635 |
+
# Get Cloudflare TURN credentials using the Hugging Face token
|
| 636 |
+
if hf_token:
|
| 637 |
+
try:
|
| 638 |
+
return await get_cloudflare_turn_credentials_async(hf_token=hf_token)
|
| 639 |
+
except Exception as e:
|
| 640 |
+
print(f"Error getting Cloudflare TURN credentials: {e}")
|
| 641 |
+
|
| 642 |
+
# Fallback to a default configuration that may not work
|
| 643 |
+
return {
|
| 644 |
+
"iceServers": [
|
| 645 |
+
{
|
| 646 |
+
"urls": "stun:stun.l.google.com:19302"
|
| 647 |
+
}
|
| 648 |
+
]
|
| 649 |
+
}
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
# Setup FastRTC stream handler with TURN server configuration
|
| 653 |
+
def setup_fastrtc_handler():
|
| 654 |
+
"""Set up FastRTC audio stream handler with TURN server configuration"""
|
| 655 |
+
handler = DiarizationHandler(diarization_system)
|
| 656 |
+
|
| 657 |
+
# Get server-side credentials (longer TTL)
|
| 658 |
+
server_credentials = get_cloudflare_turn_credentials(ttl=360000)
|
| 659 |
+
|
| 660 |
+
stream = Stream(
|
| 661 |
+
handler=handler,
|
| 662 |
+
modality="audio",
|
| 663 |
+
mode="receive",
|
| 664 |
+
rtc_configuration=get_cloudflare_credentials, # Async function for client-side credentials
|
| 665 |
+
server_rtc_configuration=server_credentials # Server-side credentials with longer TTL
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
return stream
|
| 669 |
+
|
| 670 |
+
|
| 671 |
# Create Gradio interface
|
| 672 |
def create_interface():
|
| 673 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as interface:
|
|
|
|
| 676 |
|
| 677 |
with gr.Row():
|
| 678 |
with gr.Column(scale=2):
|
| 679 |
+
# FastRTC Audio Component
|
| 680 |
+
fastrtc_html = gr.HTML("""
|
| 681 |
+
<div class="fastrtc-container" style="margin-bottom: 20px;">
|
| 682 |
+
<h3>🎙️ FastRTC Audio Input</h3>
|
| 683 |
+
<p>Click the button below to start the audio stream:</p>
|
| 684 |
+
<button id="start-fastrtc" style="background: #3498db; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer;">
|
| 685 |
+
Start FastRTC Audio
|
| 686 |
+
</button>
|
| 687 |
+
<div id="fastrtc-status" style="margin-top: 10px; font-style: italic;">Not connected</div>
|
| 688 |
+
<script>
|
| 689 |
+
document.getElementById('start-fastrtc').addEventListener('click', function() {
|
| 690 |
+
document.getElementById('fastrtc-status').textContent = 'Connecting...';
|
| 691 |
+
// FastRTC will initialize the connection
|
| 692 |
+
fetch('/start-rtc', { method: 'POST' })
|
| 693 |
+
.then(response => response.text())
|
| 694 |
+
.then(data => {
|
| 695 |
+
document.getElementById('fastrtc-status').textContent = 'Connected! Speak now...';
|
| 696 |
+
})
|
| 697 |
+
.catch(error => {
|
| 698 |
+
document.getElementById('fastrtc-status').textContent = 'Connection error: ' + error;
|
| 699 |
+
});
|
| 700 |
+
});
|
| 701 |
+
</script>
|
| 702 |
+
</div>
|
| 703 |
+
""")
|
| 704 |
|
| 705 |
# Main conversation display
|
| 706 |
conversation_output = gr.HTML(
|
|
|
|
| 751 |
gr.Markdown("""
|
| 752 |
1. Click **Initialize System** to load models
|
| 753 |
2. Click **Start Recording** to begin processing
|
| 754 |
+
3. Click **Start FastRTC Audio** to connect your microphone
|
| 755 |
+
4. Allow microphone access when prompted
|
| 756 |
+
5. Speak into your microphone
|
| 757 |
+
6. Watch real-time transcription with speaker labels
|
| 758 |
+
7. Adjust settings as needed
|
| 759 |
""")
|
| 760 |
|
| 761 |
# Speaker color legend
|
|
|
|
| 765 |
color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
|
| 766 |
|
| 767 |
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
| 768 |
+
|
| 769 |
+
# FastRTC Integration Notice
|
| 770 |
+
gr.Markdown("""
|
| 771 |
+
## ℹ️ About FastRTC
|
| 772 |
+
This app uses FastRTC for low-latency audio streaming.
|
| 773 |
+
For optimal performance, use a modern browser and allow microphone access when prompted.
|
| 774 |
+
""")
|
| 775 |
+
|
| 776 |
+
# Hugging Face Token Information
|
| 777 |
+
gr.Markdown("""
|
| 778 |
+
## 🔑 Hugging Face Token
|
| 779 |
+
This app uses Cloudflare TURN server via Hugging Face integration.
|
| 780 |
+
If audio connection fails, set your HF_TOKEN environment variable in the Space settings.
|
| 781 |
+
""")
|
| 782 |
|
| 783 |
# Auto-refresh conversation and status
|
| 784 |
def refresh_display():
|
|
|
|
| 847 |
outputs=[status_output]
|
| 848 |
)
|
| 849 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 850 |
# Auto-refresh every 2 seconds when recording
|
| 851 |
refresh_timer = gr.Timer(2.0)
|
| 852 |
refresh_timer.tick(
|
|
|
|
| 866 |
# 3) Mount Gradio onto FastAPI at root
|
| 867 |
app = gr.mount_gradio_app(app, gradio_interface, path="/")
|
| 868 |
|
| 869 |
+
# 4) Initialize and mount FastRTC stream on the same app
|
| 870 |
+
rtc_stream = setup_fastrtc_handler()
|
| 871 |
+
rtc_stream.mount(app)
|
| 872 |
+
|
| 873 |
+
# 5) Expose an endpoint to trigger the client-side RTC handshake
|
| 874 |
+
@app.post("/start-rtc")
|
| 875 |
+
async def start_rtc():
|
| 876 |
+
await rtc_stream.start_client()
|
| 877 |
+
return {"status": "success"}
|
| 878 |
+
|
| 879 |
+
# 6) Local dev via uvicorn; HF Spaces will auto-detect 'app' and ignore this
|
| 880 |
if __name__ == "__main__":
|
| 881 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|