Spaces:
Sleeping
Sleeping
Commit
·
b9dea2c
1
Parent(s):
d65b6e8
Fixing gradio RealStream
Browse files
app.py
CHANGED
|
@@ -1,24 +1,18 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
-
import queue
|
| 4 |
import torch
|
|
|
|
| 5 |
import time
|
| 6 |
-
import threading
|
| 7 |
import os
|
| 8 |
import urllib.request
|
| 9 |
-
import torchaudio
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
-
import
|
|
|
|
|
|
|
| 12 |
import asyncio
|
| 13 |
-
from typing import
|
| 14 |
-
import logging
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
logging.basicConfig(level=logging.INFO)
|
| 18 |
-
logger = logging.getLogger(__name__)
|
| 19 |
-
|
| 20 |
-
# Simplified configuration parameters
|
| 21 |
-
SILENCE_THRESHS = [0, 0.4]
|
| 22 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
| 23 |
FINAL_BEAM_SIZE = 5
|
| 24 |
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
|
|
@@ -35,33 +29,10 @@ EMBEDDING_HISTORY_SIZE = 5
|
|
| 35 |
MIN_SEGMENT_DURATION = 1.0
|
| 36 |
DEFAULT_MAX_SPEAKERS = 4
|
| 37 |
ABSOLUTE_MAX_SPEAKERS = 10
|
| 38 |
-
|
| 39 |
-
# Global variables
|
| 40 |
-
FAST_SENTENCE_END = True
|
| 41 |
SAMPLE_RATE = 16000
|
| 42 |
-
BUFFER_SIZE = 1024
|
| 43 |
-
CHANNELS = 1
|
| 44 |
-
CHUNK_DURATION_MS = 100 # 100ms chunks for FastRTC
|
| 45 |
-
|
| 46 |
-
# Speaker colors
|
| 47 |
-
SPEAKER_COLORS = [
|
| 48 |
-
"#FFFF00", # Yellow
|
| 49 |
-
"#FF0000", # Red
|
| 50 |
-
"#00FF00", # Green
|
| 51 |
-
"#00FFFF", # Cyan
|
| 52 |
-
"#FF00FF", # Magenta
|
| 53 |
-
"#0000FF", # Blue
|
| 54 |
-
"#FF8000", # Orange
|
| 55 |
-
"#00FF80", # Spring Green
|
| 56 |
-
"#8000FF", # Purple
|
| 57 |
-
"#FFFFFF", # White
|
| 58 |
-
]
|
| 59 |
-
|
| 60 |
-
SPEAKER_COLOR_NAMES = [
|
| 61 |
-
"Yellow", "Red", "Green", "Cyan", "Magenta",
|
| 62 |
-
"Blue", "Orange", "Spring Green", "Purple", "White"
|
| 63 |
-
]
|
| 64 |
|
|
|
|
|
|
|
| 65 |
|
| 66 |
class SpeechBrainEncoder:
|
| 67 |
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
|
|
@@ -73,24 +44,11 @@ class SpeechBrainEncoder:
|
|
| 73 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 74 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 75 |
|
| 76 |
-
def _download_model(self):
|
| 77 |
-
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
|
| 78 |
-
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
|
| 79 |
-
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
|
| 80 |
-
|
| 81 |
-
if not os.path.exists(model_path):
|
| 82 |
-
logger.info(f"Downloading ECAPA-TDNN model to {model_path}...")
|
| 83 |
-
urllib.request.urlretrieve(model_url, model_path)
|
| 84 |
-
|
| 85 |
-
return model_path
|
| 86 |
-
|
| 87 |
def load_model(self):
|
| 88 |
"""Load the ECAPA-TDNN model"""
|
| 89 |
try:
|
| 90 |
from speechbrain.pretrained import EncoderClassifier
|
| 91 |
|
| 92 |
-
model_path = self._download_model()
|
| 93 |
-
|
| 94 |
self.model = EncoderClassifier.from_hparams(
|
| 95 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
| 96 |
savedir=self.cache_dir,
|
|
@@ -100,7 +58,7 @@ class SpeechBrainEncoder:
|
|
| 100 |
self.model_loaded = True
|
| 101 |
return True
|
| 102 |
except Exception as e:
|
| 103 |
-
|
| 104 |
return False
|
| 105 |
|
| 106 |
def embed_utterance(self, audio, sr=16000):
|
|
@@ -122,31 +80,12 @@ class SpeechBrainEncoder:
|
|
| 122 |
|
| 123 |
return embedding.squeeze().cpu().numpy()
|
| 124 |
except Exception as e:
|
| 125 |
-
|
| 126 |
return np.zeros(self.embedding_dim)
|
| 127 |
|
| 128 |
|
| 129 |
-
class AudioProcessor:
|
| 130 |
-
"""Processes audio data to extract speaker embeddings"""
|
| 131 |
-
def __init__(self, encoder):
|
| 132 |
-
self.encoder = encoder
|
| 133 |
-
|
| 134 |
-
def extract_embedding(self, audio_float):
|
| 135 |
-
try:
|
| 136 |
-
# Ensure audio is in the right format
|
| 137 |
-
if np.abs(audio_float).max() > 1.0:
|
| 138 |
-
audio_float = audio_float / np.abs(audio_float).max()
|
| 139 |
-
|
| 140 |
-
embedding = self.encoder.embed_utterance(audio_float)
|
| 141 |
-
|
| 142 |
-
return embedding
|
| 143 |
-
except Exception as e:
|
| 144 |
-
logger.error(f"Embedding extraction error: {e}")
|
| 145 |
-
return np.zeros(self.encoder.embedding_dim)
|
| 146 |
-
|
| 147 |
-
|
| 148 |
class SpeakerChangeDetector:
|
| 149 |
-
"""Speaker change detector that supports
|
| 150 |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
| 151 |
self.embedding_dim = embedding_dim
|
| 152 |
self.change_threshold = change_threshold
|
|
@@ -254,569 +193,317 @@ class SpeakerChangeDetector:
|
|
| 254 |
)
|
| 255 |
|
| 256 |
return self.current_speaker, similarity
|
| 257 |
-
|
| 258 |
-
def get_color_for_speaker(self, speaker_id):
|
| 259 |
-
"""Return color for speaker ID"""
|
| 260 |
-
if 0 <= speaker_id < len(SPEAKER_COLORS):
|
| 261 |
-
return SPEAKER_COLORS[speaker_id]
|
| 262 |
-
return "#FFFFFF"
|
| 263 |
-
|
| 264 |
-
def get_status_info(self):
|
| 265 |
-
"""Return status information about the speaker change detector"""
|
| 266 |
-
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
|
| 267 |
-
|
| 268 |
-
return {
|
| 269 |
-
"current_speaker": self.current_speaker,
|
| 270 |
-
"speaker_counts": speaker_counts,
|
| 271 |
-
"active_speakers": len(self.active_speakers),
|
| 272 |
-
"max_speakers": self.max_speakers,
|
| 273 |
-
"last_similarity": self.last_similarity,
|
| 274 |
-
"threshold": self.change_threshold
|
| 275 |
-
}
|
| 276 |
|
| 277 |
|
| 278 |
-
class
|
| 279 |
-
"""
|
| 280 |
-
def __init__(self,
|
| 281 |
-
self.
|
| 282 |
-
self.processor = None
|
| 283 |
-
self.model_name = model_name
|
| 284 |
-
self.model_loaded = False
|
| 285 |
-
|
| 286 |
-
def load_model(self):
|
| 287 |
-
"""Load Whisper model"""
|
| 288 |
-
try:
|
| 289 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 290 |
-
|
| 291 |
-
model_id = f"distil-whisper/distil-{self.model_name}" if "distil" in self.model_name else f"openai/whisper-{self.model_name}"
|
| 292 |
-
|
| 293 |
-
self.processor = WhisperProcessor.from_pretrained(model_id)
|
| 294 |
-
self.model = WhisperForConditionalGeneration.from_pretrained(
|
| 295 |
-
model_id,
|
| 296 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 297 |
-
low_cpu_mem_usage=True,
|
| 298 |
-
use_safetensors=True
|
| 299 |
-
)
|
| 300 |
-
|
| 301 |
-
if torch.cuda.is_available():
|
| 302 |
-
self.model = self.model.cuda()
|
| 303 |
-
|
| 304 |
-
self.model_loaded = True
|
| 305 |
-
return True
|
| 306 |
-
except Exception as e:
|
| 307 |
-
logger.error(f"Error loading Whisper model: {e}")
|
| 308 |
-
return False
|
| 309 |
|
| 310 |
-
def
|
| 311 |
-
"""Transcribe audio array"""
|
| 312 |
-
if not self.model_loaded:
|
| 313 |
-
return ""
|
| 314 |
-
|
| 315 |
try:
|
| 316 |
-
# Ensure audio is
|
| 317 |
-
if
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
# Resample if needed
|
| 321 |
-
if sample_rate != 16000:
|
| 322 |
-
import torchaudio.functional as F
|
| 323 |
-
audio_tensor = torch.tensor(audio_array, dtype=torch.float32)
|
| 324 |
-
audio_array = F.resample(audio_tensor, sample_rate, 16000).numpy()
|
| 325 |
-
|
| 326 |
-
# Process with Whisper
|
| 327 |
-
inputs = self.processor(
|
| 328 |
-
audio_array,
|
| 329 |
-
sampling_rate=16000,
|
| 330 |
-
return_tensors="pt",
|
| 331 |
-
truncation=False,
|
| 332 |
-
padding=True
|
| 333 |
-
)
|
| 334 |
|
| 335 |
-
if
|
| 336 |
-
|
|
|
|
| 337 |
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
inputs["input_features"],
|
| 341 |
-
max_length=448,
|
| 342 |
-
num_beams=1,
|
| 343 |
-
do_sample=False,
|
| 344 |
-
use_cache=True
|
| 345 |
-
)
|
| 346 |
-
|
| 347 |
-
transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 348 |
|
| 349 |
-
return
|
| 350 |
except Exception as e:
|
| 351 |
-
|
| 352 |
-
return
|
| 353 |
|
| 354 |
|
| 355 |
-
class
|
| 356 |
-
|
|
|
|
| 357 |
self.encoder = None
|
| 358 |
self.audio_processor = None
|
| 359 |
self.speaker_detector = None
|
| 360 |
-
self.
|
| 361 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
self.processing_thread = None
|
| 363 |
-
self.
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
self.
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
self.last_transcription_time = time.time()
|
| 371 |
-
self.chunk_size = int(SAMPLE_RATE * CHUNK_DURATION_MS / 1000)
|
| 372 |
-
|
| 373 |
-
def initialize_models(self):
|
| 374 |
-
"""Initialize the speaker encoder and transcription models"""
|
| 375 |
try:
|
| 376 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 377 |
-
|
| 378 |
|
| 379 |
-
# Initialize speaker encoder
|
| 380 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
# Initialize transcriber
|
| 384 |
-
self.transcriber = WhisperTranscriber(FINAL_TRANSCRIPTION_MODEL)
|
| 385 |
-
transcriber_success = self.transcriber.load_model()
|
| 386 |
|
| 387 |
-
if
|
| 388 |
-
self.audio_processor = AudioProcessor(self.encoder)
|
| 389 |
-
self.speaker_detector = SpeakerChangeDetector(
|
| 390 |
-
embedding_dim=self.encoder.embedding_dim,
|
| 391 |
-
change_threshold=self.change_threshold,
|
| 392 |
-
max_speakers=self.max_speakers
|
| 393 |
-
)
|
| 394 |
-
logger.info("Models loaded successfully!")
|
| 395 |
-
return True
|
| 396 |
-
else:
|
| 397 |
-
logger.error("Failed to load models")
|
| 398 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
except Exception as e:
|
| 400 |
-
|
| 401 |
return False
|
| 402 |
|
| 403 |
-
def
|
| 404 |
-
"""
|
| 405 |
-
|
| 406 |
-
|
| 407 |
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
# Ensure mono audio
|
| 412 |
-
if len(audio_chunk.shape) > 1:
|
| 413 |
-
audio_chunk = audio_chunk.mean(axis=1)
|
| 414 |
-
|
| 415 |
-
# Normalize audio
|
| 416 |
-
if audio_chunk.dtype != np.float32:
|
| 417 |
-
audio_chunk = audio_chunk.astype(np.float32)
|
| 418 |
-
|
| 419 |
-
if np.abs(audio_chunk).max() > 1.0:
|
| 420 |
-
audio_chunk = audio_chunk / np.abs(audio_chunk).max()
|
| 421 |
-
|
| 422 |
-
# Add to buffer
|
| 423 |
-
self.audio_buffer.extend(audio_chunk)
|
| 424 |
-
|
| 425 |
-
# Keep buffer to specified duration
|
| 426 |
-
max_buffer_length = int(self.buffer_duration * sample_rate)
|
| 427 |
-
if len(self.audio_buffer) > max_buffer_length:
|
| 428 |
-
self.audio_buffer = self.audio_buffer[-max_buffer_length:]
|
| 429 |
-
|
| 430 |
-
# Process if enough audio accumulated and enough time passed
|
| 431 |
-
current_time = time.time()
|
| 432 |
-
if (current_time - self.last_transcription_time > 1.5 and
|
| 433 |
-
len(self.audio_buffer) > sample_rate * 0.8): # At least 0.8 seconds
|
| 434 |
-
|
| 435 |
-
if not self.audio_queue.full():
|
| 436 |
-
self.audio_queue.put((np.array(self.audio_buffer[-int(sample_rate * 2):]), sample_rate))
|
| 437 |
-
self.last_transcription_time = current_time
|
| 438 |
-
|
| 439 |
-
except Exception as e:
|
| 440 |
-
logger.error(f"Audio chunk processing error: {e}")
|
| 441 |
-
|
| 442 |
-
def process_audio_queue(self):
|
| 443 |
-
"""Process audio from the queue"""
|
| 444 |
-
while self.is_running:
|
| 445 |
-
try:
|
| 446 |
-
audio_data, sample_rate = self.audio_queue.get(timeout=1)
|
| 447 |
-
|
| 448 |
-
if len(audio_data) < 1600: # Skip very short audio
|
| 449 |
-
continue
|
| 450 |
-
|
| 451 |
-
# Transcribe audio
|
| 452 |
-
transcription = self.transcriber.transcribe(audio_data, sample_rate)
|
| 453 |
-
|
| 454 |
-
if transcription and len(transcription.strip()) > 0:
|
| 455 |
-
# Extract speaker embedding
|
| 456 |
-
speaker_embedding = self.audio_processor.extract_embedding(audio_data)
|
| 457 |
-
|
| 458 |
-
# Detect speaker
|
| 459 |
-
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
|
| 460 |
-
|
| 461 |
-
# Store results
|
| 462 |
-
self.full_sentences.append(transcription.strip())
|
| 463 |
-
self.sentence_speakers.append(speaker_id)
|
| 464 |
-
|
| 465 |
-
logger.info(f"Processed: Speaker {speaker_id + 1}: {transcription.strip()[:50]}...")
|
| 466 |
-
|
| 467 |
-
except queue.Empty:
|
| 468 |
-
continue
|
| 469 |
-
except Exception as e:
|
| 470 |
-
logger.error(f"Error processing audio queue: {e}")
|
| 471 |
|
| 472 |
-
def
|
| 473 |
-
"""
|
| 474 |
-
if
|
| 475 |
-
return
|
| 476 |
-
|
| 477 |
try:
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
self.last_transcription_time = time.time()
|
| 481 |
|
| 482 |
-
#
|
| 483 |
-
|
| 484 |
-
try:
|
| 485 |
-
self.audio_queue.get_nowait()
|
| 486 |
-
except queue.Empty:
|
| 487 |
-
break
|
| 488 |
|
| 489 |
-
#
|
| 490 |
-
|
| 491 |
-
|
| 492 |
|
| 493 |
-
|
| 494 |
-
return "Recording started successfully!"
|
| 495 |
|
| 496 |
except Exception as e:
|
| 497 |
-
|
| 498 |
-
return f"
|
| 499 |
|
| 500 |
-
def
|
| 501 |
-
"""
|
| 502 |
-
self.
|
| 503 |
-
logger.info("Recording stopped!")
|
| 504 |
-
return "Recording stopped!"
|
| 505 |
|
| 506 |
-
def
|
| 507 |
-
"""
|
| 508 |
-
self.
|
| 509 |
-
self.sentence_speakers = []
|
| 510 |
-
self.audio_buffer = []
|
| 511 |
-
|
| 512 |
-
# Clear the queue
|
| 513 |
-
while not self.audio_queue.empty():
|
| 514 |
-
try:
|
| 515 |
-
self.audio_queue.get_nowait()
|
| 516 |
-
except queue.Empty:
|
| 517 |
-
break
|
| 518 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
if self.speaker_detector:
|
| 520 |
self.speaker_detector = SpeakerChangeDetector(
|
| 521 |
embedding_dim=self.encoder.embedding_dim,
|
| 522 |
change_threshold=self.change_threshold,
|
| 523 |
max_speakers=self.max_speakers
|
| 524 |
)
|
| 525 |
-
|
| 526 |
-
return "Conversation cleared!"
|
| 527 |
-
|
| 528 |
-
def update_settings(self, threshold, max_speakers):
|
| 529 |
-
"""Update speaker detection settings"""
|
| 530 |
-
self.change_threshold = threshold
|
| 531 |
-
self.max_speakers = max_speakers
|
| 532 |
-
|
| 533 |
-
if self.speaker_detector:
|
| 534 |
-
self.speaker_detector.set_change_threshold(threshold)
|
| 535 |
-
self.speaker_detector.set_max_speakers(max_speakers)
|
| 536 |
-
|
| 537 |
-
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
| 538 |
-
|
| 539 |
-
def get_formatted_conversation(self):
|
| 540 |
-
"""Get the formatted conversation with speaker colors"""
|
| 541 |
-
try:
|
| 542 |
-
if not self.full_sentences:
|
| 543 |
-
return "Waiting for speech input... 🎤"
|
| 544 |
-
|
| 545 |
-
sentences_with_style = []
|
| 546 |
-
|
| 547 |
-
for i, sentence in enumerate(self.full_sentences[-10:]): # Show last 10 sentences
|
| 548 |
-
if i >= len(self.sentence_speakers):
|
| 549 |
-
color = "#FFFFFF"
|
| 550 |
-
speaker_name = "Unknown"
|
| 551 |
-
else:
|
| 552 |
-
speaker_id = self.sentence_speakers[-(10-i) if len(self.sentence_speakers) >= 10 else i]
|
| 553 |
-
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
| 554 |
-
speaker_name = f"Speaker {speaker_id + 1}"
|
| 555 |
-
|
| 556 |
-
sentences_with_style.append(
|
| 557 |
-
f'<p><span style="color:{color}; font-weight: bold;">{speaker_name}:</span> {sentence}</p>')
|
| 558 |
-
|
| 559 |
-
return "".join(sentences_with_style)
|
| 560 |
-
|
| 561 |
-
except Exception as e:
|
| 562 |
-
return f"Error formatting conversation: {e}"
|
| 563 |
-
|
| 564 |
-
def get_status_info(self):
|
| 565 |
-
"""Get current status information"""
|
| 566 |
-
if not self.speaker_detector:
|
| 567 |
-
return "Speaker detector not initialized"
|
| 568 |
-
|
| 569 |
-
try:
|
| 570 |
-
status = self.speaker_detector.get_status_info()
|
| 571 |
-
queue_size = self.audio_queue.qsize()
|
| 572 |
-
|
| 573 |
-
status_lines = [
|
| 574 |
-
f"**Current Speaker:** {status['current_speaker'] + 1}",
|
| 575 |
-
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
|
| 576 |
-
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
| 577 |
-
f"**Change Threshold:** {status['threshold']:.2f}",
|
| 578 |
-
f"**Total Sentences:** {len(self.full_sentences)}",
|
| 579 |
-
f"**Buffer Length:** {len(self.audio_buffer)} samples",
|
| 580 |
-
f"**Queue Size:** {queue_size}",
|
| 581 |
-
"",
|
| 582 |
-
"**Speaker Segment Counts:**"
|
| 583 |
-
]
|
| 584 |
-
|
| 585 |
-
for i in range(status['max_speakers']):
|
| 586 |
-
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
|
| 587 |
-
status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}")
|
| 588 |
-
|
| 589 |
-
return "\n".join(status_lines)
|
| 590 |
-
|
| 591 |
-
except Exception as e:
|
| 592 |
-
return f"Error getting status: {e}"
|
| 593 |
|
| 594 |
|
| 595 |
# Global instance
|
| 596 |
-
diarization_system =
|
| 597 |
|
| 598 |
|
| 599 |
-
def initialize_system():
|
| 600 |
"""Initialize the diarization system"""
|
| 601 |
-
success = diarization_system.
|
| 602 |
if success:
|
| 603 |
-
return "✅
|
| 604 |
else:
|
| 605 |
-
return "❌ Failed to initialize system. Please check
|
| 606 |
-
|
| 607 |
|
| 608 |
-
def start_recording():
|
| 609 |
-
"""Start recording and transcription"""
|
| 610 |
-
return diarization_system.start_recording()
|
| 611 |
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 616 |
|
| 617 |
|
| 618 |
def clear_conversation():
|
| 619 |
-
"""Clear the conversation"""
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
def update_settings(threshold, max_speakers):
|
| 624 |
-
"""Update system settings"""
|
| 625 |
-
return diarization_system.update_settings(threshold, max_speakers)
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
def get_conversation():
|
| 629 |
-
"""Get the current conversation"""
|
| 630 |
-
return diarization_system.get_formatted_conversation()
|
| 631 |
|
| 632 |
|
| 633 |
-
def
|
| 634 |
-
"""
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
def process_audio_stream(audio_stream):
|
| 639 |
-
"""Process streaming audio from FastRTC"""
|
| 640 |
-
if audio_stream is not None and diarization_system.is_running:
|
| 641 |
-
sample_rate, audio_data = audio_stream
|
| 642 |
-
diarization_system.process_audio_chunk(audio_data, sample_rate)
|
| 643 |
-
|
| 644 |
-
return get_conversation(), get_status()
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
# Create Gradio interface with FastRTC
|
| 648 |
-
def create_interface():
|
| 649 |
-
with gr.Blocks(title="FastRTC Real-time Speaker Diarization", theme=gr.themes.Soft()) as app:
|
| 650 |
-
gr.Markdown("# 🎤 FastRTC Real-time Speech Recognition with Speaker Diarization")
|
| 651 |
-
gr.Markdown("This app uses Hugging Face FastRTC for real-time audio streaming with automatic speaker identification and color-coding.")
|
| 652 |
|
|
|
|
| 653 |
with gr.Row():
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
container=True,
|
| 664 |
-
elem_id="fastrtc_audio"
|
| 665 |
-
)
|
| 666 |
-
|
| 667 |
-
# Main conversation display
|
| 668 |
-
conversation_output = gr.HTML(
|
| 669 |
-
value="<i>Click 'Initialize System' and then 'Start Recording' to begin...</i>",
|
| 670 |
-
label="Live Conversation",
|
| 671 |
-
elem_id="conversation_display"
|
| 672 |
-
)
|
| 673 |
-
|
| 674 |
-
# Control buttons
|
| 675 |
-
with gr.Row():
|
| 676 |
-
init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg")
|
| 677 |
-
start_btn = gr.Button("🎙️ Start Recording", variant="primary", interactive=False, size="lg")
|
| 678 |
-
stop_btn = gr.Button("⏹️ Stop Recording", variant="stop", interactive=False, size="lg")
|
| 679 |
-
clear_btn = gr.Button("🗑️ Clear", interactive=False, size="lg")
|
| 680 |
-
|
| 681 |
-
# Status display
|
| 682 |
-
status_output = gr.Textbox(
|
| 683 |
-
label="System Status",
|
| 684 |
-
value="System not initialized",
|
| 685 |
-
lines=10,
|
| 686 |
-
interactive=False,
|
| 687 |
-
show_copy_button=True
|
| 688 |
-
)
|
| 689 |
-
|
| 690 |
-
with gr.Column(scale=1):
|
| 691 |
-
# Settings panel
|
| 692 |
-
gr.Markdown("## ⚙️ Settings")
|
| 693 |
-
|
| 694 |
-
threshold_slider = gr.Slider(
|
| 695 |
-
minimum=0.1,
|
| 696 |
-
maximum=0.95,
|
| 697 |
-
step=0.05,
|
| 698 |
value=DEFAULT_CHANGE_THRESHOLD,
|
| 699 |
-
|
| 700 |
-
|
|
|
|
| 701 |
)
|
| 702 |
-
|
| 703 |
-
|
| 704 |
minimum=2,
|
| 705 |
maximum=ABSOLUTE_MAX_SPEAKERS,
|
| 706 |
-
step=1,
|
| 707 |
value=DEFAULT_MAX_SPEAKERS,
|
| 708 |
-
|
|
|
|
|
|
|
| 709 |
)
|
| 710 |
-
|
| 711 |
-
update_settings_btn = gr.Button("Update Settings", variant="secondary")
|
| 712 |
-
|
| 713 |
-
# Speaker color legend
|
| 714 |
-
gr.Markdown("## 🎨 Speaker Colors")
|
| 715 |
-
color_info = []
|
| 716 |
-
for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)):
|
| 717 |
-
color_info.append(f'<span style="color:{color}; font-size: 16px;">●</span> Speaker {i+1} ({name})')
|
| 718 |
-
|
| 719 |
-
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
| 720 |
-
|
| 721 |
-
# Performance info
|
| 722 |
-
gr.Markdown("## 📊 Performance")
|
| 723 |
-
gr.Markdown("""
|
| 724 |
-
- **FastRTC**: Low-latency audio streaming
|
| 725 |
-
- **Whisper**: distil-large-v3 for transcription
|
| 726 |
-
- **ECAPA-TDNN**: Speaker embeddings
|
| 727 |
-
- **Real-time**: ~100ms processing chunks
|
| 728 |
-
""")
|
| 729 |
|
| 730 |
-
#
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
gr.update(interactive=True), # clear_btn
|
| 738 |
-
get_conversation(), # conversation_output
|
| 739 |
-
get_status() # status_output update
|
| 740 |
)
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
gr.update(interactive=False), # clear_btn
|
| 746 |
-
get_conversation(), # conversation_output
|
| 747 |
-
get_status() # status_output update
|
| 748 |
)
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
# Auto-refresh function
|
| 767 |
-
def refresh_display():
|
| 768 |
-
return get_conversation(), get_status()
|
| 769 |
-
|
| 770 |
-
# Connect event handlers
|
| 771 |
-
init_btn.click(
|
| 772 |
-
on_initialize,
|
| 773 |
-
outputs=[status_output, start_btn, clear_btn, conversation_output, status_output]
|
| 774 |
)
|
| 775 |
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
|
|
|
| 779 |
)
|
| 780 |
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 784 |
)
|
| 785 |
|
| 786 |
clear_btn.click(
|
| 787 |
-
clear_conversation,
|
| 788 |
-
outputs=[
|
| 789 |
)
|
| 790 |
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 795 |
)
|
| 796 |
|
| 797 |
-
#
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
)
|
|
|
|
|
|
|
|
|
|
| 812 |
|
| 813 |
-
return
|
| 814 |
|
| 815 |
|
| 816 |
if __name__ == "__main__":
|
| 817 |
-
|
| 818 |
-
|
|
|
|
|
|
|
| 819 |
server_name="0.0.0.0",
|
| 820 |
server_port=7860,
|
| 821 |
-
|
| 822 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
|
|
|
| 3 |
import torch
|
| 4 |
+
import torchaudio
|
| 5 |
import time
|
|
|
|
| 6 |
import os
|
| 7 |
import urllib.request
|
|
|
|
| 8 |
from scipy.spatial.distance import cosine
|
| 9 |
+
import threading
|
| 10 |
+
import queue
|
| 11 |
+
from collections import deque
|
| 12 |
import asyncio
|
| 13 |
+
from typing import Generator, Tuple, List, Optional
|
|
|
|
| 14 |
|
| 15 |
+
# Configuration parameters (keeping original models)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
| 17 |
FINAL_BEAM_SIZE = 5
|
| 18 |
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
|
|
|
|
| 29 |
MIN_SEGMENT_DURATION = 1.0
|
| 30 |
DEFAULT_MAX_SPEAKERS = 4
|
| 31 |
ABSOLUTE_MAX_SPEAKERS = 10
|
|
|
|
|
|
|
|
|
|
| 32 |
SAMPLE_RATE = 16000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Speaker labels
|
| 35 |
+
SPEAKER_LABELS = [f"Speaker {i+1}" for i in range(ABSOLUTE_MAX_SPEAKERS)]
|
| 36 |
|
| 37 |
class SpeechBrainEncoder:
|
| 38 |
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
|
|
|
|
| 44 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 45 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
def load_model(self):
|
| 48 |
"""Load the ECAPA-TDNN model"""
|
| 49 |
try:
|
| 50 |
from speechbrain.pretrained import EncoderClassifier
|
| 51 |
|
|
|
|
|
|
|
| 52 |
self.model = EncoderClassifier.from_hparams(
|
| 53 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
| 54 |
savedir=self.cache_dir,
|
|
|
|
| 58 |
self.model_loaded = True
|
| 59 |
return True
|
| 60 |
except Exception as e:
|
| 61 |
+
print(f"Error loading ECAPA-TDNN model: {e}")
|
| 62 |
return False
|
| 63 |
|
| 64 |
def embed_utterance(self, audio, sr=16000):
|
|
|
|
| 80 |
|
| 81 |
return embedding.squeeze().cpu().numpy()
|
| 82 |
except Exception as e:
|
| 83 |
+
print(f"Error extracting embedding: {e}")
|
| 84 |
return np.zeros(self.embedding_dim)
|
| 85 |
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
class SpeakerChangeDetector:
|
| 88 |
+
"""Speaker change detector that supports configurable number of speakers"""
|
| 89 |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
| 90 |
self.embedding_dim = embedding_dim
|
| 91 |
self.change_threshold = change_threshold
|
|
|
|
| 193 |
)
|
| 194 |
|
| 195 |
return self.current_speaker, similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
|
| 198 |
+
class AudioProcessor:
|
| 199 |
+
"""Processes audio data to extract speaker embeddings"""
|
| 200 |
+
def __init__(self, encoder):
|
| 201 |
+
self.encoder = encoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
def extract_embedding(self, audio_data):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
try:
|
| 205 |
+
# Ensure audio is float32 and normalized
|
| 206 |
+
if audio_data.dtype != np.float32:
|
| 207 |
+
audio_data = audio_data.astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
+
# Normalize if needed
|
| 210 |
+
if np.abs(audio_data).max() > 1.0:
|
| 211 |
+
audio_data = audio_data / np.abs(audio_data).max()
|
| 212 |
|
| 213 |
+
# Extract embedding using the loaded encoder
|
| 214 |
+
embedding = self.encoder.embed_utterance(audio_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
+
return embedding
|
| 217 |
except Exception as e:
|
| 218 |
+
print(f"Embedding extraction error: {e}")
|
| 219 |
+
return np.zeros(self.encoder.embedding_dim)
|
| 220 |
|
| 221 |
|
| 222 |
+
class RealTimeSpeakerDiarization:
|
| 223 |
+
"""Main class for real-time speaker diarization"""
|
| 224 |
+
def __init__(self, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
| 225 |
self.encoder = None
|
| 226 |
self.audio_processor = None
|
| 227 |
self.speaker_detector = None
|
| 228 |
+
self.change_threshold = change_threshold
|
| 229 |
+
self.max_speakers = max_speakers
|
| 230 |
+
self.transcript_history = []
|
| 231 |
+
self.is_initialized = False
|
| 232 |
+
|
| 233 |
+
# Threading components
|
| 234 |
+
self.audio_queue = queue.Queue()
|
| 235 |
self.processing_thread = None
|
| 236 |
+
self.running = False
|
| 237 |
+
|
| 238 |
+
async def initialize(self):
|
| 239 |
+
"""Initialize the speaker diarization system"""
|
| 240 |
+
if self.is_initialized:
|
| 241 |
+
return True
|
| 242 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
try:
|
| 244 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 245 |
+
print(f"Initializing ECAPA-TDNN model on {device_str}...")
|
| 246 |
|
|
|
|
| 247 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
| 248 |
+
success = self.encoder.load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
+
if not success:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
return False
|
| 252 |
+
|
| 253 |
+
self.audio_processor = AudioProcessor(self.encoder)
|
| 254 |
+
self.speaker_detector = SpeakerChangeDetector(
|
| 255 |
+
embedding_dim=self.encoder.embedding_dim,
|
| 256 |
+
change_threshold=self.change_threshold,
|
| 257 |
+
max_speakers=self.max_speakers
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
self.is_initialized = True
|
| 261 |
+
print("Speaker diarization system initialized successfully!")
|
| 262 |
+
return True
|
| 263 |
+
|
| 264 |
except Exception as e:
|
| 265 |
+
print(f"Initialization error: {e}")
|
| 266 |
return False
|
| 267 |
|
| 268 |
+
def update_settings(self, change_threshold, max_speakers):
|
| 269 |
+
"""Update diarization settings"""
|
| 270 |
+
self.change_threshold = change_threshold
|
| 271 |
+
self.max_speakers = max_speakers
|
| 272 |
|
| 273 |
+
if self.speaker_detector:
|
| 274 |
+
self.speaker_detector.set_change_threshold(change_threshold)
|
| 275 |
+
self.speaker_detector.set_max_speakers(max_speakers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
+
def process_audio_segment(self, audio_data: np.ndarray, text: str) -> Tuple[int, str]:
|
| 278 |
+
"""Process an audio segment and return speaker ID and formatted text"""
|
| 279 |
+
if not self.is_initialized:
|
| 280 |
+
return 0, text
|
| 281 |
+
|
| 282 |
try:
|
| 283 |
+
# Extract speaker embedding
|
| 284 |
+
embedding = self.audio_processor.extract_embedding(audio_data)
|
|
|
|
| 285 |
|
| 286 |
+
# Detect speaker
|
| 287 |
+
speaker_id, similarity = self.speaker_detector.add_embedding(embedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
+
# Format text with speaker label
|
| 290 |
+
speaker_label = SPEAKER_LABELS[speaker_id]
|
| 291 |
+
formatted_text = f"{speaker_label}: {text}"
|
| 292 |
|
| 293 |
+
return speaker_id, formatted_text
|
|
|
|
| 294 |
|
| 295 |
except Exception as e:
|
| 296 |
+
print(f"Error processing audio segment: {e}")
|
| 297 |
+
return 0, f"Speaker 1: {text}"
|
| 298 |
|
| 299 |
+
def get_transcript_history(self):
|
| 300 |
+
"""Get the formatted transcript history"""
|
| 301 |
+
return "\n".join(self.transcript_history)
|
|
|
|
|
|
|
| 302 |
|
| 303 |
+
def add_to_transcript(self, formatted_text: str):
|
| 304 |
+
"""Add formatted text to transcript history"""
|
| 305 |
+
self.transcript_history.append(formatted_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
+
# Keep only last 50 entries to prevent memory issues
|
| 308 |
+
if len(self.transcript_history) > 50:
|
| 309 |
+
self.transcript_history = self.transcript_history[-50:]
|
| 310 |
+
|
| 311 |
+
def clear_transcript(self):
|
| 312 |
+
"""Clear transcript history and reset speaker detector"""
|
| 313 |
+
self.transcript_history = []
|
| 314 |
if self.speaker_detector:
|
| 315 |
self.speaker_detector = SpeakerChangeDetector(
|
| 316 |
embedding_dim=self.encoder.embedding_dim,
|
| 317 |
change_threshold=self.change_threshold,
|
| 318 |
max_speakers=self.max_speakers
|
| 319 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
|
| 322 |
# Global instance
|
| 323 |
+
diarization_system = RealTimeSpeakerDiarization()
|
| 324 |
|
| 325 |
|
| 326 |
+
async def initialize_system():
|
| 327 |
"""Initialize the diarization system"""
|
| 328 |
+
success = await diarization_system.initialize()
|
| 329 |
if success:
|
| 330 |
+
return "✅ Speaker diarization system initialized successfully!"
|
| 331 |
else:
|
| 332 |
+
return "❌ Failed to initialize speaker diarization system. Please check your setup."
|
|
|
|
| 333 |
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
+
def process_audio_with_transcript(audio_data, sample_rate, transcription_text, change_threshold, max_speakers):
|
| 336 |
+
"""Process audio with transcription for speaker diarization"""
|
| 337 |
+
if not diarization_system.is_initialized:
|
| 338 |
+
return "Please initialize the system first.", ""
|
| 339 |
+
|
| 340 |
+
if audio_data is None or transcription_text.strip() == "":
|
| 341 |
+
return diarization_system.get_transcript_history(), ""
|
| 342 |
+
|
| 343 |
+
try:
|
| 344 |
+
# Update settings
|
| 345 |
+
diarization_system.update_settings(change_threshold, max_speakers)
|
| 346 |
+
|
| 347 |
+
# Convert audio to the right format
|
| 348 |
+
if len(audio_data.shape) > 1:
|
| 349 |
+
audio_data = audio_data.mean(axis=1) # Convert to mono
|
| 350 |
+
|
| 351 |
+
# Resample if needed
|
| 352 |
+
if sample_rate != SAMPLE_RATE:
|
| 353 |
+
audio_data = torchaudio.functional.resample(
|
| 354 |
+
torch.tensor(audio_data), sample_rate, SAMPLE_RATE
|
| 355 |
+
).numpy()
|
| 356 |
+
|
| 357 |
+
# Process the audio segment
|
| 358 |
+
speaker_id, formatted_text = diarization_system.process_audio_segment(audio_data, transcription_text)
|
| 359 |
+
|
| 360 |
+
# Add to transcript
|
| 361 |
+
diarization_system.add_to_transcript(formatted_text)
|
| 362 |
+
|
| 363 |
+
# Return updated transcript and current speaker info
|
| 364 |
+
transcript = diarization_system.get_transcript_history()
|
| 365 |
+
current_speaker_info = f"Current Speaker: {SPEAKER_LABELS[speaker_id]}"
|
| 366 |
+
|
| 367 |
+
return transcript, current_speaker_info
|
| 368 |
+
|
| 369 |
+
except Exception as e:
|
| 370 |
+
error_msg = f"Error processing audio: {str(e)}"
|
| 371 |
+
return diarization_system.get_transcript_history(), error_msg
|
| 372 |
|
| 373 |
|
| 374 |
def clear_conversation():
|
| 375 |
+
"""Clear the conversation transcript"""
|
| 376 |
+
diarization_system.clear_transcript()
|
| 377 |
+
return "", "Conversation cleared."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
|
| 379 |
|
| 380 |
+
def create_gradio_interface():
|
| 381 |
+
"""Create and return the Gradio interface"""
|
| 382 |
+
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as demo:
|
| 383 |
+
gr.Markdown("# 🎙️ Real-time Speaker Diarization with ASR")
|
| 384 |
+
gr.Markdown("Upload audio with transcription to perform real-time speaker diarization.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
+
# Initialization section
|
| 387 |
with gr.Row():
|
| 388 |
+
init_btn = gr.Button("🚀 Initialize System", variant="primary")
|
| 389 |
+
init_status = gr.Textbox(label="Initialization Status", interactive=False)
|
| 390 |
+
|
| 391 |
+
# Settings section
|
| 392 |
+
with gr.Row():
|
| 393 |
+
with gr.Column():
|
| 394 |
+
change_threshold = gr.Slider(
|
| 395 |
+
minimum=0.1,
|
| 396 |
+
maximum=0.9,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
value=DEFAULT_CHANGE_THRESHOLD,
|
| 398 |
+
step=0.05,
|
| 399 |
+
label="Speaker Change Threshold",
|
| 400 |
+
info="Lower values = more sensitive to speaker changes"
|
| 401 |
)
|
| 402 |
+
with gr.Column():
|
| 403 |
+
max_speakers = gr.Slider(
|
| 404 |
minimum=2,
|
| 405 |
maximum=ABSOLUTE_MAX_SPEAKERS,
|
|
|
|
| 406 |
value=DEFAULT_MAX_SPEAKERS,
|
| 407 |
+
step=1,
|
| 408 |
+
label="Maximum Number of Speakers",
|
| 409 |
+
info="Maximum number of speakers to detect"
|
| 410 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
+
# Audio input and transcription
|
| 413 |
+
with gr.Row():
|
| 414 |
+
with gr.Column():
|
| 415 |
+
audio_input = gr.Audio(
|
| 416 |
+
label="Audio Input",
|
| 417 |
+
type="numpy",
|
| 418 |
+
format="wav"
|
|
|
|
|
|
|
|
|
|
| 419 |
)
|
| 420 |
+
transcription_input = gr.Textbox(
|
| 421 |
+
label="Transcription Text",
|
| 422 |
+
placeholder="Enter the transcription of the audio...",
|
| 423 |
+
lines=3
|
|
|
|
|
|
|
|
|
|
| 424 |
)
|
| 425 |
+
process_btn = gr.Button("🎯 Process Audio", variant="secondary")
|
| 426 |
+
|
| 427 |
+
with gr.Column():
|
| 428 |
+
current_speaker = gr.Textbox(
|
| 429 |
+
label="Current Speaker",
|
| 430 |
+
interactive=False
|
| 431 |
+
)
|
| 432 |
+
clear_btn = gr.Button("🗑️ Clear Conversation", variant="stop")
|
| 433 |
+
|
| 434 |
+
# Output section
|
| 435 |
+
transcript_output = gr.Textbox(
|
| 436 |
+
label="Live Transcript with Speaker Labels",
|
| 437 |
+
lines=15,
|
| 438 |
+
max_lines=20,
|
| 439 |
+
interactive=False,
|
| 440 |
+
placeholder="Processed transcript will appear here..."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
)
|
| 442 |
|
| 443 |
+
# Event handlers
|
| 444 |
+
init_btn.click(
|
| 445 |
+
fn=initialize_system,
|
| 446 |
+
outputs=[init_status]
|
| 447 |
)
|
| 448 |
|
| 449 |
+
process_btn.click(
|
| 450 |
+
fn=process_audio_with_transcript,
|
| 451 |
+
inputs=[
|
| 452 |
+
audio_input,
|
| 453 |
+
gr.Number(value=SAMPLE_RATE, visible=False), # Hidden sample rate
|
| 454 |
+
transcription_input,
|
| 455 |
+
change_threshold,
|
| 456 |
+
max_speakers
|
| 457 |
+
],
|
| 458 |
+
outputs=[transcript_output, current_speaker]
|
| 459 |
)
|
| 460 |
|
| 461 |
clear_btn.click(
|
| 462 |
+
fn=clear_conversation,
|
| 463 |
+
outputs=[transcript_output, current_speaker]
|
| 464 |
)
|
| 465 |
|
| 466 |
+
# Auto-process when audio and transcription are provided
|
| 467 |
+
audio_input.change(
|
| 468 |
+
fn=process_audio_with_transcript,
|
| 469 |
+
inputs=[
|
| 470 |
+
audio_input,
|
| 471 |
+
gr.Number(value=SAMPLE_RATE, visible=False),
|
| 472 |
+
transcription_input,
|
| 473 |
+
change_threshold,
|
| 474 |
+
max_speakers
|
| 475 |
+
],
|
| 476 |
+
outputs=[transcript_output, current_speaker]
|
| 477 |
)
|
| 478 |
|
| 479 |
+
# Instructions
|
| 480 |
+
gr.Markdown("""
|
| 481 |
+
## Instructions:
|
| 482 |
+
1. **Initialize**: Click "Initialize System" to load the speaker diarization models
|
| 483 |
+
2. **Upload Audio**: Upload an audio file (WAV format recommended)
|
| 484 |
+
3. **Add Transcription**: Enter the transcription text for the audio
|
| 485 |
+
4. **Adjust Settings**:
|
| 486 |
+
- **Speaker Change Threshold**: Lower values detect speaker changes more easily
|
| 487 |
+
- **Max Speakers**: Set the maximum number of speakers you expect
|
| 488 |
+
5. **Process**: Click "Process Audio" or the system will auto-process
|
| 489 |
+
6. **View Results**: See the transcript with speaker labels (Speaker 1, Speaker 2, etc.)
|
| 490 |
+
|
| 491 |
+
## Tips:
|
| 492 |
+
- For similar-sounding speakers, increase the threshold (0.6-0.8)
|
| 493 |
+
- For different-sounding speakers, lower threshold works better (0.3-0.5)
|
| 494 |
+
- The system maintains speaker consistency across the conversation
|
| 495 |
+
- Use "Clear Conversation" to reset the speaker memory
|
| 496 |
+
""")
|
| 497 |
|
| 498 |
+
return demo
|
| 499 |
|
| 500 |
|
| 501 |
if __name__ == "__main__":
|
| 502 |
+
# Create and launch the Gradio interface
|
| 503 |
+
demo = create_gradio_interface()
|
| 504 |
+
demo.launch(
|
| 505 |
+
share=True,
|
| 506 |
server_name="0.0.0.0",
|
| 507 |
server_port=7860,
|
| 508 |
+
show_error=True
|
| 509 |
)
|