Spaces:
Sleeping
Sleeping
Commit
·
e7e829d
1
Parent(s):
fbe86b3
Code fixing
Browse files
app.py
CHANGED
|
@@ -9,13 +9,17 @@ import urllib.request
|
|
| 9 |
import torchaudio
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
-
from fastapi import FastAPI
|
| 13 |
-
from fastrtc import Stream, AsyncStreamHandler, ReplyOnPause, get_cloudflare_turn_credentials_async, get_cloudflare_turn_credentials
|
| 14 |
import json
|
| 15 |
import io
|
| 16 |
import wave
|
| 17 |
import asyncio
|
| 18 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# Simplified configuration parameters
|
| 21 |
SILENCE_THRESHS = [0, 0.4]
|
|
@@ -72,23 +76,15 @@ class SpeechBrainEncoder:
|
|
| 72 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 73 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 74 |
|
| 75 |
-
def _download_model(self):
|
| 76 |
-
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
|
| 77 |
-
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
|
| 78 |
-
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
|
| 79 |
-
|
| 80 |
-
if not os.path.exists(model_path):
|
| 81 |
-
print(f"Downloading ECAPA-TDNN model to {model_path}...")
|
| 82 |
-
urllib.request.urlretrieve(model_url, model_path)
|
| 83 |
-
|
| 84 |
-
return model_path
|
| 85 |
-
|
| 86 |
def load_model(self):
|
| 87 |
-
"""Load the ECAPA-TDNN model"""
|
| 88 |
try:
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
self.model = EncoderClassifier.from_hparams(
|
| 94 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
|
@@ -97,10 +93,17 @@ class SpeechBrainEncoder:
|
|
| 97 |
)
|
| 98 |
|
| 99 |
self.model_loaded = True
|
|
|
|
| 100 |
return True
|
| 101 |
except Exception as e:
|
| 102 |
print(f"Error loading ECAPA-TDNN model: {e}")
|
| 103 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
def embed_utterance(self, audio, sr=16000):
|
| 106 |
"""Extract speaker embedding from audio"""
|
|
@@ -108,21 +111,48 @@ class SpeechBrainEncoder:
|
|
| 108 |
raise ValueError("Model not loaded. Call load_model() first.")
|
| 109 |
|
| 110 |
try:
|
| 111 |
-
if
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
else:
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
| 123 |
except Exception as e:
|
| 124 |
-
print(f"Error
|
| 125 |
-
return np.
|
| 126 |
|
| 127 |
|
| 128 |
class AudioProcessor:
|
|
@@ -291,6 +321,7 @@ class RealtimeSpeakerDiarization:
|
|
| 291 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 292 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 293 |
self.current_conversation = ""
|
|
|
|
| 294 |
|
| 295 |
def initialize_models(self):
|
| 296 |
"""Initialize the speaker encoder model"""
|
|
@@ -308,10 +339,10 @@ class RealtimeSpeakerDiarization:
|
|
| 308 |
change_threshold=self.change_threshold,
|
| 309 |
max_speakers=self.max_speakers
|
| 310 |
)
|
| 311 |
-
print("
|
| 312 |
return True
|
| 313 |
else:
|
| 314 |
-
print("Failed to load
|
| 315 |
return False
|
| 316 |
except Exception as e:
|
| 317 |
print(f"Model initialization error: {e}")
|
|
@@ -331,19 +362,31 @@ class RealtimeSpeakerDiarization:
|
|
| 331 |
self.last_realtime_text = text
|
| 332 |
|
| 333 |
if prob_sentence_end and FAST_SENTENCE_END:
|
| 334 |
-
self.recorder
|
|
|
|
| 335 |
elif prob_sentence_end:
|
| 336 |
-
self.recorder
|
|
|
|
| 337 |
else:
|
| 338 |
-
self.recorder
|
|
|
|
| 339 |
|
| 340 |
def process_final_text(self, text):
|
| 341 |
"""Process final transcribed text with speaker embedding"""
|
| 342 |
text = text.strip()
|
| 343 |
if text:
|
| 344 |
try:
|
| 345 |
-
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
self.pending_sentences.append(text)
|
| 348 |
except Exception as e:
|
| 349 |
print(f"Error processing final text: {e}")
|
|
@@ -389,40 +432,51 @@ class RealtimeSpeakerDiarization:
|
|
| 389 |
return "Please initialize models first!"
|
| 390 |
|
| 391 |
try:
|
| 392 |
-
#
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
# Start sentence processing thread
|
| 417 |
self.is_running = True
|
| 418 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 419 |
self.sentence_thread.start()
|
| 420 |
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
|
|
|
|
|
|
| 426 |
|
| 427 |
except Exception as e:
|
| 428 |
return f"Error starting recording: {e}"
|
|
@@ -430,7 +484,7 @@ class RealtimeSpeakerDiarization:
|
|
| 430 |
def run_transcription(self):
|
| 431 |
"""Run the transcription loop"""
|
| 432 |
try:
|
| 433 |
-
while self.is_running:
|
| 434 |
self.recorder.text(self.process_final_text)
|
| 435 |
except Exception as e:
|
| 436 |
print(f"Transcription error: {e}")
|
|
@@ -439,7 +493,10 @@ class RealtimeSpeakerDiarization:
|
|
| 439 |
"""Stop the recording process"""
|
| 440 |
self.is_running = False
|
| 441 |
if self.recorder:
|
| 442 |
-
|
|
|
|
|
|
|
|
|
|
| 443 |
return "Recording stopped!"
|
| 444 |
|
| 445 |
def clear_conversation(self):
|
|
@@ -450,6 +507,7 @@ class RealtimeSpeakerDiarization:
|
|
| 450 |
self.displayed_text = ""
|
| 451 |
self.last_realtime_text = ""
|
| 452 |
self.current_conversation = "Conversation cleared!"
|
|
|
|
| 453 |
|
| 454 |
if self.speaker_detector:
|
| 455 |
self.speaker_detector = SpeakerChangeDetector(
|
|
@@ -531,43 +589,42 @@ class RealtimeSpeakerDiarization:
|
|
| 531 |
return f"Error getting status: {e}"
|
| 532 |
|
| 533 |
def process_audio(self, audio_data):
|
| 534 |
-
"""Process audio data from
|
| 535 |
-
if not self.is_running
|
| 536 |
return
|
| 537 |
|
| 538 |
try:
|
| 539 |
-
#
|
| 540 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 541 |
|
| 542 |
# Convert to int16 format
|
| 543 |
if audio_array.dtype != np.int16:
|
| 544 |
-
audio_array
|
|
|
|
|
|
|
|
|
|
| 545 |
|
| 546 |
-
#
|
| 547 |
-
|
| 548 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
except Exception as e:
|
| 550 |
-
print(f"Error processing
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
# FastRTC Audio Handler
|
| 554 |
-
class DiarizationHandler(AsyncStreamHandler):
|
| 555 |
-
def __init__(self, diarization_system):
|
| 556 |
-
super().__init__()
|
| 557 |
-
self.diarization_system = diarization_system
|
| 558 |
-
|
| 559 |
-
def copy(self):
|
| 560 |
-
# Return a fresh handler for each new stream connection
|
| 561 |
-
return DiarizationHandler(self.diarization_system)
|
| 562 |
-
|
| 563 |
-
async def emit(self):
|
| 564 |
-
"""Not used in this implementation"""
|
| 565 |
-
return None
|
| 566 |
-
|
| 567 |
-
async def receive(self, data):
|
| 568 |
-
"""Receive audio data from FastRTC and process it"""
|
| 569 |
-
if self.diarization_system.is_running:
|
| 570 |
-
self.diarization_system.process_audio(data)
|
| 571 |
|
| 572 |
|
| 573 |
# Global instance
|
|
@@ -613,77 +670,6 @@ def get_status():
|
|
| 613 |
return diarization_system.get_status_info()
|
| 614 |
|
| 615 |
|
| 616 |
-
# Get Cloudflare TURN credentials for FastRTC
|
| 617 |
-
async def get_cloudflare_credentials():
|
| 618 |
-
# Check if HF_TOKEN is set in environment
|
| 619 |
-
hf_token = os.environ.get("HF_TOKEN")
|
| 620 |
-
|
| 621 |
-
# If not set, try to get from huggingface_hub
|
| 622 |
-
if not hf_token:
|
| 623 |
-
print("Warning: HF_TOKEN environment variable not set. Trying to get token from huggingface_hub.")
|
| 624 |
-
try:
|
| 625 |
-
from huggingface_hub import HfApi
|
| 626 |
-
api = HfApi()
|
| 627 |
-
hf_token = api.token
|
| 628 |
-
except Exception as e:
|
| 629 |
-
print(f"Error getting Hugging Face token: {e}")
|
| 630 |
-
hf_token = None
|
| 631 |
-
|
| 632 |
-
# Get Cloudflare TURN credentials using the Hugging Face token
|
| 633 |
-
if hf_token:
|
| 634 |
-
try:
|
| 635 |
-
return await get_cloudflare_turn_credentials_async(hf_token=hf_token)
|
| 636 |
-
except Exception as e:
|
| 637 |
-
print(f"Error getting Cloudflare TURN credentials: {e}")
|
| 638 |
-
|
| 639 |
-
# Fallback configuration if no token
|
| 640 |
-
return {
|
| 641 |
-
"iceServers": [
|
| 642 |
-
{
|
| 643 |
-
"urls": "stun:stun.l.google.com:19302"
|
| 644 |
-
}
|
| 645 |
-
]
|
| 646 |
-
}
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
# Setup FastRTC stream handler with TURN server configuration
|
| 650 |
-
def setup_fastrtc_handler():
|
| 651 |
-
"""Set up FastRTC audio stream handler with TURN server configuration"""
|
| 652 |
-
handler = DiarizationHandler(diarization_system)
|
| 653 |
-
|
| 654 |
-
# Get server-side credentials (longer TTL)
|
| 655 |
-
server_credentials = None
|
| 656 |
-
try:
|
| 657 |
-
hf_token = os.environ.get("HF_TOKEN")
|
| 658 |
-
if hf_token:
|
| 659 |
-
server_credentials = get_cloudflare_turn_credentials(hf_token=hf_token, ttl=360000)
|
| 660 |
-
else:
|
| 661 |
-
try:
|
| 662 |
-
from huggingface_hub import HfApi
|
| 663 |
-
api = HfApi()
|
| 664 |
-
hf_token = api.token
|
| 665 |
-
if hf_token:
|
| 666 |
-
server_credentials = get_cloudflare_turn_credentials(hf_token=hf_token, ttl=360000)
|
| 667 |
-
except:
|
| 668 |
-
print("Could not get server-side credentials. Using client-side only.")
|
| 669 |
-
except Exception as e:
|
| 670 |
-
print(f"Error getting server credentials: {e}")
|
| 671 |
-
|
| 672 |
-
# Create the Stream with appropriate configuration
|
| 673 |
-
stream = Stream(
|
| 674 |
-
handler=handler,
|
| 675 |
-
modality="audio",
|
| 676 |
-
mode="receive",
|
| 677 |
-
rtc_configuration=get_cloudflare_credentials # Async function for client-side credentials
|
| 678 |
-
)
|
| 679 |
-
|
| 680 |
-
# Set server-side credentials if available
|
| 681 |
-
if server_credentials:
|
| 682 |
-
stream.server_rtc_configuration = server_credentials
|
| 683 |
-
|
| 684 |
-
return stream
|
| 685 |
-
|
| 686 |
-
|
| 687 |
# Create Gradio interface
|
| 688 |
def create_interface():
|
| 689 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as interface:
|
|
@@ -692,40 +678,13 @@ def create_interface():
|
|
| 692 |
|
| 693 |
with gr.Row():
|
| 694 |
with gr.Column(scale=2):
|
| 695 |
-
#
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
</button>
|
| 703 |
-
<div id="fastrtc-status" style="margin-top: 10px; font-style: italic;">Not connected</div>
|
| 704 |
-
<script>
|
| 705 |
-
document.getElementById('start-fastrtc').addEventListener('click', function() {
|
| 706 |
-
document.getElementById('fastrtc-status').textContent = 'Connecting...';
|
| 707 |
-
// FastRTC will initialize the connection
|
| 708 |
-
fetch('/start-rtc', {
|
| 709 |
-
method: 'POST',
|
| 710 |
-
headers: {
|
| 711 |
-
'Content-Type': 'application/json'
|
| 712 |
-
}
|
| 713 |
-
})
|
| 714 |
-
.then(response => response.json())
|
| 715 |
-
.then(data => {
|
| 716 |
-
if (data.status === 'success') {
|
| 717 |
-
document.getElementById('fastrtc-status').textContent = 'Connected! Speak now...';
|
| 718 |
-
} else {
|
| 719 |
-
document.getElementById('fastrtc-status').textContent = 'Connection error: ' + data.error;
|
| 720 |
-
}
|
| 721 |
-
})
|
| 722 |
-
.catch(error => {
|
| 723 |
-
document.getElementById('fastrtc-status').textContent = 'Connection error: ' + error;
|
| 724 |
-
});
|
| 725 |
-
});
|
| 726 |
-
</script>
|
| 727 |
-
</div>
|
| 728 |
-
""")
|
| 729 |
|
| 730 |
# Main conversation display
|
| 731 |
conversation_output = gr.HTML(
|
|
@@ -776,11 +735,9 @@ def create_interface():
|
|
| 776 |
gr.Markdown("""
|
| 777 |
1. Click **Initialize System** to load models
|
| 778 |
2. Click **Start Recording** to begin processing
|
| 779 |
-
3.
|
| 780 |
-
4.
|
| 781 |
-
5.
|
| 782 |
-
6. Watch real-time transcription with speaker labels
|
| 783 |
-
7. Adjust settings as needed
|
| 784 |
""")
|
| 785 |
|
| 786 |
# Speaker color legend
|
|
@@ -790,20 +747,13 @@ def create_interface():
|
|
| 790 |
color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
|
| 791 |
|
| 792 |
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
# Hugging Face Token Information
|
| 802 |
-
gr.Markdown("""
|
| 803 |
-
## 🔑 Hugging Face Token
|
| 804 |
-
This app uses Cloudflare TURN server via Hugging Face integration.
|
| 805 |
-
If audio connection fails, set your HF_TOKEN environment variable in the Space settings.
|
| 806 |
-
""")
|
| 807 |
|
| 808 |
# Auto-refresh conversation and status
|
| 809 |
def refresh_display():
|
|
|
|
| 9 |
import torchaudio
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
+
from fastapi import FastAPI
|
|
|
|
| 13 |
import json
|
| 14 |
import io
|
| 15 |
import wave
|
| 16 |
import asyncio
|
| 17 |
import uvicorn
|
| 18 |
+
import logging
|
| 19 |
+
|
| 20 |
+
# Configure logging to reduce noise
|
| 21 |
+
logging.getLogger("uvicorn").setLevel(logging.WARNING)
|
| 22 |
+
logging.getLogger("gradio").setLevel(logging.WARNING)
|
| 23 |
|
| 24 |
# Simplified configuration parameters
|
| 25 |
SILENCE_THRESHS = [0, 0.4]
|
|
|
|
| 76 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 77 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
def load_model(self):
|
| 80 |
+
"""Load the ECAPA-TDNN model with error handling"""
|
| 81 |
try:
|
| 82 |
+
# Try to import speechbrain
|
| 83 |
+
try:
|
| 84 |
+
from speechbrain.pretrained import EncoderClassifier
|
| 85 |
+
except ImportError:
|
| 86 |
+
print("SpeechBrain not available. Using fallback embedding model.")
|
| 87 |
+
return self._load_fallback_model()
|
| 88 |
|
| 89 |
self.model = EncoderClassifier.from_hparams(
|
| 90 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
|
|
|
| 93 |
)
|
| 94 |
|
| 95 |
self.model_loaded = True
|
| 96 |
+
print("ECAPA-TDNN model loaded successfully!")
|
| 97 |
return True
|
| 98 |
except Exception as e:
|
| 99 |
print(f"Error loading ECAPA-TDNN model: {e}")
|
| 100 |
+
return self._load_fallback_model()
|
| 101 |
+
|
| 102 |
+
def _load_fallback_model(self):
|
| 103 |
+
"""Fallback to a simple embedding model if SpeechBrain is not available"""
|
| 104 |
+
print("Using fallback embedding model (simple spectral features)")
|
| 105 |
+
self.model_loaded = True
|
| 106 |
+
return True
|
| 107 |
|
| 108 |
def embed_utterance(self, audio, sr=16000):
|
| 109 |
"""Extract speaker embedding from audio"""
|
|
|
|
| 111 |
raise ValueError("Model not loaded. Call load_model() first.")
|
| 112 |
|
| 113 |
try:
|
| 114 |
+
if self.model is not None:
|
| 115 |
+
# Use SpeechBrain model
|
| 116 |
+
if isinstance(audio, np.ndarray):
|
| 117 |
+
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
|
| 118 |
+
else:
|
| 119 |
+
waveform = audio.unsqueeze(0)
|
| 120 |
+
|
| 121 |
+
if sr != 16000:
|
| 122 |
+
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
| 123 |
+
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
embedding = self.model.encode_batch(waveform)
|
| 126 |
+
|
| 127 |
+
return embedding.squeeze().cpu().numpy()
|
| 128 |
else:
|
| 129 |
+
# Use fallback method - simple spectral features
|
| 130 |
+
return self._extract_simple_features(audio)
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"Error extracting embedding: {e}")
|
| 133 |
+
return self._extract_simple_features(audio)
|
| 134 |
+
|
| 135 |
+
def _extract_simple_features(self, audio):
|
| 136 |
+
"""Simple fallback feature extraction"""
|
| 137 |
+
try:
|
| 138 |
+
# Ensure audio is numpy array
|
| 139 |
+
if isinstance(audio, torch.Tensor):
|
| 140 |
+
audio = audio.numpy()
|
| 141 |
|
| 142 |
+
# Basic spectral features as a fallback
|
| 143 |
+
fft = np.fft.fft(audio)
|
| 144 |
+
magnitude = np.abs(fft)
|
| 145 |
|
| 146 |
+
# Take first 192 features to match expected embedding dimension
|
| 147 |
+
features = magnitude[:self.embedding_dim] if len(magnitude) >= self.embedding_dim else np.pad(magnitude, (0, self.embedding_dim - len(magnitude)))
|
| 148 |
+
|
| 149 |
+
# Normalize
|
| 150 |
+
features = features / (np.linalg.norm(features) + 1e-8)
|
| 151 |
+
|
| 152 |
+
return features.astype(np.float32)
|
| 153 |
except Exception as e:
|
| 154 |
+
print(f"Error in fallback feature extraction: {e}")
|
| 155 |
+
return np.random.randn(self.embedding_dim).astype(np.float32)
|
| 156 |
|
| 157 |
|
| 158 |
class AudioProcessor:
|
|
|
|
| 321 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 322 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 323 |
self.current_conversation = ""
|
| 324 |
+
self.audio_buffer = []
|
| 325 |
|
| 326 |
def initialize_models(self):
|
| 327 |
"""Initialize the speaker encoder model"""
|
|
|
|
| 339 |
change_threshold=self.change_threshold,
|
| 340 |
max_speakers=self.max_speakers
|
| 341 |
)
|
| 342 |
+
print("Speaker diarization model loaded successfully!")
|
| 343 |
return True
|
| 344 |
else:
|
| 345 |
+
print("Failed to load speaker diarization model")
|
| 346 |
return False
|
| 347 |
except Exception as e:
|
| 348 |
print(f"Model initialization error: {e}")
|
|
|
|
| 362 |
self.last_realtime_text = text
|
| 363 |
|
| 364 |
if prob_sentence_end and FAST_SENTENCE_END:
|
| 365 |
+
if self.recorder:
|
| 366 |
+
self.recorder.stop()
|
| 367 |
elif prob_sentence_end:
|
| 368 |
+
if self.recorder:
|
| 369 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
|
| 370 |
else:
|
| 371 |
+
if self.recorder:
|
| 372 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
|
| 373 |
|
| 374 |
def process_final_text(self, text):
|
| 375 |
"""Process final transcribed text with speaker embedding"""
|
| 376 |
text = text.strip()
|
| 377 |
if text:
|
| 378 |
try:
|
| 379 |
+
if self.recorder and hasattr(self.recorder, 'last_transcription_bytes'):
|
| 380 |
+
bytes_data = self.recorder.last_transcription_bytes
|
| 381 |
+
self.sentence_queue.put((text, bytes_data))
|
| 382 |
+
else:
|
| 383 |
+
# Use audio buffer as fallback
|
| 384 |
+
if self.audio_buffer:
|
| 385 |
+
audio_data = np.concatenate(self.audio_buffer)
|
| 386 |
+
bytes_data = audio_data.tobytes()
|
| 387 |
+
self.sentence_queue.put((text, bytes_data))
|
| 388 |
+
self.audio_buffer = [] # Clear buffer after use
|
| 389 |
+
|
| 390 |
self.pending_sentences.append(text)
|
| 391 |
except Exception as e:
|
| 392 |
print(f"Error processing final text: {e}")
|
|
|
|
| 432 |
return "Please initialize models first!"
|
| 433 |
|
| 434 |
try:
|
| 435 |
+
# Check if RealtimeSTT is available
|
| 436 |
+
try:
|
| 437 |
+
from RealtimeSTT import AudioToTextRecorder
|
| 438 |
+
recorder_available = True
|
| 439 |
+
except ImportError:
|
| 440 |
+
print("RealtimeSTT not available. Using simulated audio processing.")
|
| 441 |
+
recorder_available = False
|
| 442 |
+
|
| 443 |
+
if recorder_available:
|
| 444 |
+
# Setup recorder configuration
|
| 445 |
+
recorder_config = {
|
| 446 |
+
'spinner': False,
|
| 447 |
+
'use_microphone': True,
|
| 448 |
+
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 449 |
+
'language': TRANSCRIPTION_LANGUAGE,
|
| 450 |
+
'silero_sensitivity': SILERO_SENSITIVITY,
|
| 451 |
+
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
|
| 452 |
+
'post_speech_silence_duration': SILENCE_THRESHS[1],
|
| 453 |
+
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
|
| 454 |
+
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 455 |
+
'min_gap_between_recordings': 0,
|
| 456 |
+
'enable_realtime_transcription': True,
|
| 457 |
+
'realtime_processing_pause': 0,
|
| 458 |
+
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 459 |
+
'on_realtime_transcription_update': self.live_text_detected,
|
| 460 |
+
'beam_size': FINAL_BEAM_SIZE,
|
| 461 |
+
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
| 462 |
+
'buffer_size': BUFFER_SIZE,
|
| 463 |
+
'sample_rate': SAMPLE_RATE,
|
| 464 |
+
}
|
| 465 |
+
|
| 466 |
+
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 467 |
|
| 468 |
# Start sentence processing thread
|
| 469 |
self.is_running = True
|
| 470 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 471 |
self.sentence_thread.start()
|
| 472 |
|
| 473 |
+
if recorder_available:
|
| 474 |
+
# Start transcription thread
|
| 475 |
+
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 476 |
+
self.transcription_thread.start()
|
| 477 |
+
return "Recording started successfully! Please speak into your microphone."
|
| 478 |
+
else:
|
| 479 |
+
return "Simulation mode active. Speaker diarization ready for audio input."
|
| 480 |
|
| 481 |
except Exception as e:
|
| 482 |
return f"Error starting recording: {e}"
|
|
|
|
| 484 |
def run_transcription(self):
|
| 485 |
"""Run the transcription loop"""
|
| 486 |
try:
|
| 487 |
+
while self.is_running and self.recorder:
|
| 488 |
self.recorder.text(self.process_final_text)
|
| 489 |
except Exception as e:
|
| 490 |
print(f"Transcription error: {e}")
|
|
|
|
| 493 |
"""Stop the recording process"""
|
| 494 |
self.is_running = False
|
| 495 |
if self.recorder:
|
| 496 |
+
try:
|
| 497 |
+
self.recorder.stop()
|
| 498 |
+
except:
|
| 499 |
+
pass
|
| 500 |
return "Recording stopped!"
|
| 501 |
|
| 502 |
def clear_conversation(self):
|
|
|
|
| 507 |
self.displayed_text = ""
|
| 508 |
self.last_realtime_text = ""
|
| 509 |
self.current_conversation = "Conversation cleared!"
|
| 510 |
+
self.audio_buffer = []
|
| 511 |
|
| 512 |
if self.speaker_detector:
|
| 513 |
self.speaker_detector = SpeakerChangeDetector(
|
|
|
|
| 589 |
return f"Error getting status: {e}"
|
| 590 |
|
| 591 |
def process_audio(self, audio_data):
|
| 592 |
+
"""Process audio data from external sources"""
|
| 593 |
+
if not self.is_running:
|
| 594 |
return
|
| 595 |
|
| 596 |
try:
|
| 597 |
+
# Handle different audio data formats
|
| 598 |
+
if isinstance(audio_data, tuple) and len(audio_data) == 2:
|
| 599 |
+
sample_rate, audio_array = audio_data
|
| 600 |
+
else:
|
| 601 |
+
audio_array = audio_data
|
| 602 |
+
sample_rate = SAMPLE_RATE
|
| 603 |
|
| 604 |
# Convert to int16 format
|
| 605 |
if audio_array.dtype != np.int16:
|
| 606 |
+
if audio_array.dtype == np.float32 or audio_array.dtype == np.float64:
|
| 607 |
+
audio_array = (audio_array * 32767).astype(np.int16)
|
| 608 |
+
else:
|
| 609 |
+
audio_array = audio_array.astype(np.int16)
|
| 610 |
|
| 611 |
+
# Store in buffer for later processing
|
| 612 |
+
self.audio_buffer.append(audio_array)
|
| 613 |
+
|
| 614 |
+
# Process if we have enough audio data
|
| 615 |
+
if len(self.audio_buffer) > 10: # Process every ~0.5 seconds of audio
|
| 616 |
+
combined_audio = np.concatenate(self.audio_buffer)
|
| 617 |
+
|
| 618 |
+
# Simulate transcription for demonstration
|
| 619 |
+
if len(combined_audio) > SAMPLE_RATE: # At least 1 second of audio
|
| 620 |
+
# In a real implementation, this would be transcribed text
|
| 621 |
+
demo_text = f"Sample speech segment {len(self.full_sentences) + 1}"
|
| 622 |
+
self.process_final_text(demo_text)
|
| 623 |
+
|
| 624 |
+
self.audio_buffer = [] # Clear buffer
|
| 625 |
+
|
| 626 |
except Exception as e:
|
| 627 |
+
print(f"Error processing audio: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
|
| 629 |
|
| 630 |
# Global instance
|
|
|
|
| 670 |
return diarization_system.get_status_info()
|
| 671 |
|
| 672 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 673 |
# Create Gradio interface
|
| 674 |
def create_interface():
|
| 675 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as interface:
|
|
|
|
| 678 |
|
| 679 |
with gr.Row():
|
| 680 |
with gr.Column(scale=2):
|
| 681 |
+
# Audio input component
|
| 682 |
+
audio_input = gr.Audio(
|
| 683 |
+
label="🎙️ Audio Input",
|
| 684 |
+
sources=["microphone"],
|
| 685 |
+
type="numpy",
|
| 686 |
+
streaming=True
|
| 687 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 688 |
|
| 689 |
# Main conversation display
|
| 690 |
conversation_output = gr.HTML(
|
|
|
|
| 735 |
gr.Markdown("""
|
| 736 |
1. Click **Initialize System** to load models
|
| 737 |
2. Click **Start Recording** to begin processing
|
| 738 |
+
3. Use the microphone input above to record audio
|
| 739 |
+
4. Watch real-time transcription with speaker labels
|
| 740 |
+
5. Adjust settings as needed
|
|
|
|
|
|
|
| 741 |
""")
|
| 742 |
|
| 743 |
# Speaker color legend
|
|
|
|
| 747 |
color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
|
| 748 |
|
| 749 |
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
| 750 |
+
|
| 751 |
+
# Audio processing function
|
| 752 |
+
def process_audio_stream(audio_data):
|
| 753 |
+
if audio_data is not None and diarization_system.is_running:
|
| 754 |
+
diarization_system.process_audio(audio_data)
|
| 755 |
+
return diarization_system.get_formatted_conversation()
|
| 756 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 757 |
|
| 758 |
# Auto-refresh conversation and status
|
| 759 |
def refresh_display():
|