import gradio as gr import tensorflow as tf import numpy as np from PIL import Image # Load the model model = tf.keras.models.load_model("car_damage_model .h5") # Prediction function def predict_damage(img): img = img.resize((224, 224)) img = np.array(img) / 255.0 img = np.expand_dims(img, axis=0) pred = model.predict(img)[0][0] label = "Whole Car" if pred > 0.5 else "Damaged Car" return f"{label} ({pred:.4f})" # Gradio interface interface = gr.Interface( fn=predict_damage, inputs=gr.Image(type="pil"), outputs=gr.Label(), title="Car Damage Classifier", description="Upload a car image and this model will tell if it's damaged or not." ) interface.launch()