Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,33 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
-
from peft import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# Configure 4-bit quantization
|
| 11 |
-
bnb_config = BitsAndBytesConfig(
|
| 12 |
-
load_in_4bit=True,
|
| 13 |
-
bnb_4bit_quant_type="nf4",
|
| 14 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 15 |
-
bnb_4bit_use_double_quant=True,
|
| 16 |
)
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
# Initialize tokenizer
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 20 |
|
| 21 |
-
# Load the base model with 4-bit quantization
|
| 22 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
-
model_name,
|
| 24 |
-
device_map="auto",
|
| 25 |
-
quantization_config=bnb_config
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
# Load the LoRA adapter
|
| 29 |
model = PeftModel.from_pretrained(model, lora_model_name)
|
| 30 |
-
|
| 31 |
def generate_response(input_text):
|
| 32 |
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
| 33 |
|
|
@@ -40,12 +26,14 @@ def generate_response(input_text):
|
|
| 40 |
}
|
| 41 |
|
| 42 |
with torch.no_grad():
|
| 43 |
-
outputs = model.generate(
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
response = tokenizer.decode(outputs[0])
|
| 46 |
return response.split("<start_of_turn>model\n")[1].split("<end_of_turn>")[0]
|
| 47 |
|
| 48 |
-
# Create Gradio interface
|
| 49 |
iface = gr.Interface(
|
| 50 |
fn=generate_response,
|
| 51 |
inputs=gr.Textbox(lines=5, placeholder="Metninizi buraya girin..."),
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
+
from peft import (
|
| 5 |
+
LoraConfig,
|
| 6 |
+
PeftModel,
|
| 7 |
+
prepare_model_for_kbit_training,
|
| 8 |
+
get_peft_model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
)
|
| 10 |
+
model_name = "google/gemma-2-2b-it"
|
| 11 |
+
lora_model_name="Anlam-Lab/gemma-2-2b-it-anlamlab-SA-Chatgpt4mini"
|
| 12 |
|
|
|
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
model = PeftModel.from_pretrained(model, lora_model_name)
|
|
|
|
| 17 |
def generate_response(input_text):
|
| 18 |
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
| 19 |
|
|
|
|
| 26 |
}
|
| 27 |
|
| 28 |
with torch.no_grad():
|
| 29 |
+
outputs = model.generate(
|
| 30 |
+
**inputs,
|
| 31 |
+
**generation_config
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
response = tokenizer.decode(outputs[0])
|
| 35 |
return response.split("<start_of_turn>model\n")[1].split("<end_of_turn>")[0]
|
| 36 |
|
|
|
|
| 37 |
iface = gr.Interface(
|
| 38 |
fn=generate_response,
|
| 39 |
inputs=gr.Textbox(lines=5, placeholder="Metninizi buraya girin..."),
|