Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,96 +1,57 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
from peft import PeftModel
|
| 5 |
-
from typing import Dict, Any
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 18 |
-
|
| 19 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 20 |
-
base_model_name,
|
| 21 |
-
device_map="auto",
|
| 22 |
-
torch_dtype=torch.float16
|
| 23 |
-
)
|
| 24 |
-
self.model = PeftModel.from_pretrained(self.model, lora_model_name)
|
| 25 |
-
self.model.eval()
|
| 26 |
-
|
| 27 |
-
def generate_response(self, input_text: str) -> str:
|
| 28 |
-
if not input_text or not input_text.strip():
|
| 29 |
-
return "Error: Please provide valid input text."
|
| 30 |
-
|
| 31 |
-
try:
|
| 32 |
-
inputs = self.tokenizer(
|
| 33 |
-
input_text,
|
| 34 |
-
return_tensors="pt",
|
| 35 |
-
padding=True,
|
| 36 |
-
truncation=True,
|
| 37 |
-
max_length=512
|
| 38 |
-
).to(self.device)
|
| 39 |
-
|
| 40 |
-
generation_config: Dict[str, Any] = {
|
| 41 |
-
"max_length": 512,
|
| 42 |
-
"temperature": 0.01,
|
| 43 |
-
"do_sample": True,
|
| 44 |
-
"pad_token_id": self.tokenizer.pad_token_id,
|
| 45 |
-
"eos_token_id": self.tokenizer.eos_token_id,
|
| 46 |
-
"num_return_sequences": 1,
|
| 47 |
-
"top_k": 50,
|
| 48 |
-
"top_p": 0.95,
|
| 49 |
-
}
|
| 50 |
-
|
| 51 |
-
with torch.no_grad():
|
| 52 |
-
outputs = self.model.generate(**inputs, **generation_config)
|
| 53 |
-
|
| 54 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 55 |
-
return response.split("<|end_header_id|>")[-1].split("<|eot_id|>")[0].strip()
|
| 56 |
-
|
| 57 |
-
except Exception as e:
|
| 58 |
-
return f"Error generating response: {str(e)}"
|
| 59 |
-
|
| 60 |
-
def create_interface(self) -> gr.Interface:
|
| 61 |
-
return gr.Interface(
|
| 62 |
-
fn=self.generate_response,
|
| 63 |
-
inputs=gr.Textbox(
|
| 64 |
-
lines=5,
|
| 65 |
-
placeholder="Metninizi buraya girin...",
|
| 66 |
-
label="Giriş Metni"
|
| 67 |
-
),
|
| 68 |
-
outputs=gr.Textbox(
|
| 69 |
-
lines=5,
|
| 70 |
-
label="Model Çıktısı"
|
| 71 |
-
),
|
| 72 |
-
title="Anlam-Lab Duygu Analizi",
|
| 73 |
-
description="Metin girişi yaparak duygu analizi sonucunu alabilirsiniz.",
|
| 74 |
-
examples=[
|
| 75 |
-
["Akıllı saati uzun süre kullandım ve şık tasarımı, harika sağlık takibi özellikleri ve uzun pil ömrüyle çok memnun kaldım."],
|
| 76 |
-
["Ürünü aldım ama pil ömrü kısa, ekran parlaklığı yetersiz ve sağlık takibi doğru sonuçlar vermedi."],
|
| 77 |
-
],
|
| 78 |
-
theme="default"
|
| 79 |
-
)
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
server_name="0.0.0.0",
|
| 89 |
-
server_port=7860
|
| 90 |
-
)
|
| 91 |
-
except Exception as e:
|
| 92 |
-
print(f"Error launching interface: {str(e)}")
|
| 93 |
-
raise
|
| 94 |
|
| 95 |
if __name__ == "__main__":
|
| 96 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 3 |
import torch
|
| 4 |
from peft import PeftModel
|
|
|
|
| 5 |
|
| 6 |
+
# Model and tokenizer names
|
| 7 |
+
model_name = "google/gemma-2-2b-it"
|
| 8 |
+
lora_model_name = "Anlam-Lab/gemma-2-2b-it-anlamlab-SA-Chatgpt4mini"
|
| 9 |
+
|
| 10 |
+
# Configure 4-bit quantization
|
| 11 |
+
bnb_config = BitsAndBytesConfig(
|
| 12 |
+
load_in_4bit=True,
|
| 13 |
+
bnb_4bit_quant_type="nf4",
|
| 14 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 15 |
+
bnb_4bit_use_double_quant=True,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Initialize tokenizer
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 20 |
+
|
| 21 |
+
# Load the base model with 4-bit quantization
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
+
model_name,
|
| 24 |
+
device_map="auto",
|
| 25 |
+
quantization_config=bnb_config
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Load the LoRA adapter
|
| 29 |
+
model = PeftModel.from_pretrained(model, lora_model_name)
|
| 30 |
+
|
| 31 |
+
def generate_response(input_text):
|
| 32 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
| 33 |
+
|
| 34 |
+
generation_config = {
|
| 35 |
+
"max_length": 512,
|
| 36 |
+
"temperature": 0.01,
|
| 37 |
+
"do_sample": True,
|
| 38 |
+
"pad_token_id": tokenizer.pad_token_id,
|
| 39 |
+
"eos_token_id": tokenizer.eos_token_id,
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = model.generate(**inputs, **generation_config)
|
| 44 |
|
| 45 |
+
response = tokenizer.decode(outputs[0])
|
| 46 |
+
return response.split("<start_of_turn>model\n")[1].split("<end_of_turn>")[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# Create Gradio interface
|
| 49 |
+
iface = gr.Interface(
|
| 50 |
+
fn=generate_response,
|
| 51 |
+
inputs=gr.Textbox(lines=5, placeholder="Metninizi buraya girin..."),
|
| 52 |
+
outputs=gr.Textbox(lines=5, label="Model Çıktısı"),
|
| 53 |
+
title="Anlam-Lab"
|
| 54 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
if __name__ == "__main__":
|
| 57 |
+
iface.launch()
|