Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,56 +1,54 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
-
import torch
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
from peft import (
|
| 6 |
-
LoraConfig,
|
| 7 |
-
PeftModel,
|
| 8 |
-
prepare_model_for_kbit_training,
|
| 9 |
-
get_peft_model,
|
| 10 |
-
)
|
| 11 |
-
model_name = "google/gemma-2-2b-it"
|
| 12 |
-
lora_model_name="Anlam-Lab/gemma-2-2b-it-anlamlab-SA-Chatgpt4mini"
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
-
@torch.no_grad()
|
| 17 |
-
def load_model():
|
| 18 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 19 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 20 |
-
model_name,
|
| 21 |
-
device_map=device,
|
| 22 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 23 |
-
low_cpu_mem_usage=True
|
| 24 |
-
)
|
| 25 |
-
model = PeftModel.from_pretrained(model, lora_model_name)
|
| 26 |
-
model.eval()
|
| 27 |
-
return model, tokenizer
|
| 28 |
-
|
| 29 |
-
model, tokenizer = load_model()
|
| 30 |
-
|
| 31 |
-
def generate_response(text):
|
| 32 |
-
example = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>Bir duygu analisti olarak sana verilen metinleri analiz et ve aşağıdaki kategorilerden yalnızca birini seçerek metnin duygu durumunu belirle:Positive,Negative,Neutral<|eot_id|><|start_header_id|>user<|end_header_id|>{text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
| 33 |
-
inputs = tokenizer(example, return_tensors="pt")
|
| 34 |
-
with torch.no_grad():
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
if __name__ == "__main__":
|
| 56 |
iface.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from peft import (
|
| 6 |
+
LoraConfig,
|
| 7 |
+
PeftModel,
|
| 8 |
+
prepare_model_for_kbit_training,
|
| 9 |
+
get_peft_model,
|
| 10 |
+
)
|
| 11 |
+
model_name = "google/gemma-2-2b-it"
|
| 12 |
+
lora_model_name="Anlam-Lab/gemma-2-2b-it-anlamlab-SA-Chatgpt4mini"
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
@torch.no_grad()
|
| 17 |
+
def load_model():
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 20 |
+
model_name,
|
| 21 |
+
device_map=device,
|
| 22 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 23 |
+
low_cpu_mem_usage=True
|
| 24 |
+
)
|
| 25 |
+
model = PeftModel.from_pretrained(model, lora_model_name)
|
| 26 |
+
model.eval()
|
| 27 |
+
return model, tokenizer
|
| 28 |
+
|
| 29 |
+
model, tokenizer = load_model()
|
| 30 |
+
|
| 31 |
+
def generate_response(text):
|
| 32 |
+
example = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>Bir duygu analisti olarak sana verilen metinleri analiz et ve aşağıdaki kategorilerden yalnızca birini seçerek metnin duygu durumunu belirle:Positive,Negative,Neutral<|eot_id|><|start_header_id|>user<|end_header_id|>{text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
| 33 |
+
inputs = tokenizer(example, return_tensors="pt")
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
model_output = model(**inputs)
|
| 36 |
+
logits = model_output.logits
|
| 37 |
+
probabilities = F.softmax(logits, dim=-1)
|
| 38 |
+
top_probs, top_tokens = torch.topk(probabilities[0, -1, :], k=10)
|
| 39 |
+
predicted_label = tokenizer.decode(top_tokens[0])
|
| 40 |
+
return predicted_label
|
| 41 |
+
|
| 42 |
+
iface = gr.Interface(
|
| 43 |
+
fn=generate_response,
|
| 44 |
+
inputs=gr.Textbox(lines=5, placeholder="Metninizi buraya girin..."),
|
| 45 |
+
outputs=gr.Textbox(lines=5, label="Model Çıktısı"),
|
| 46 |
+
title="Anlam-Lab",
|
| 47 |
+
examples=[
|
| 48 |
+
["Akıllı saati uzun süre kullandım ve şık tasarımı, harika sağlık takibi özellikleri ve uzun pil ömrüyle çok memnun kaldım."],
|
| 49 |
+
["Ürünü aldım ama pil ömrü kısa, ekran parlaklığı yetersiz ve sağlık takibi doğru sonuçlar vermedi."],
|
| 50 |
+
]
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
if __name__ == "__main__":
|
|
|
|
|
|
|
| 54 |
iface.launch()
|