Spaces:
Sleeping
Sleeping
| from lida import Manager, TextGenerationConfig , llm | |
| from dotenv import load_dotenv | |
| import os | |
| import openai | |
| import base64 | |
| from PIL import Image | |
| from io import BytesIO | |
| print("Import Successful!") | |
| load_dotenv() | |
| def base64_to_image(base64_string): | |
| # Decode the base64 string | |
| byte_data = base64.b64decode(base64_string) | |
| # Use BytesIO to convert the byte data to image | |
| return Image.open(BytesIO(byte_data)) | |
| def save_image(base64_str, save_path): | |
| img = base64_to_image(base64_str) | |
| img.save(save_path) | |
| print(f"Image saved at {save_path}") | |
| openai.api_key = os.getenv('OPENAI_API_KEY') | |
| #text_gen = llm("openai") | |
| #text_gen = llm(provider="hf", model="togethercomputer/Llama-2-7B-32K-Instruct", device_map="cpu") | |
| lida = Manager(text_gen = llm("openai")) | |
| print("Model Loaded Successfully!") | |
| textgen_config = TextGenerationConfig(n=1, temperature=0.5, model="gpt-3.5-turbo-0301", use_cache=True) | |
| summary = lida.summarize("2019.csv", summary_method="default", textgen_config=textgen_config) | |
| print(summary) | |
| goals = lida.goals(summary, n=2, textgen_config=textgen_config) | |
| for goal in goals: | |
| print(goal) | |
| i = 0 | |
| library = "seaborn" | |
| textgen_config = TextGenerationConfig(n=1, temperature=0.2, use_cache=True) | |
| charts = lida.visualize(summary=summary, goal=goals[i], textgen_config=textgen_config, library=library) | |
| image_base64 = charts[0].raster | |
| save_image(image_base64, "filename.png") | |