Spaces:
Sleeping
Sleeping
| import os | |
| import streamlit.components.v1 as components | |
| from datasets import load_dataset | |
| import random | |
| import pickle | |
| from nltk.tokenize import sent_tokenize | |
| import nltk | |
| from PyPDF2 import PdfReader | |
| import streamlit as st | |
| from streamlit_extras.add_vertical_space import add_vertical_space | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.embeddings.openai import OpenAIEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.llms import OpenAI | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.callbacks import get_openai_callback | |
| from my_component import my_component | |
| nltk.download('punkt') | |
| # Sidebar contents | |
| with st.sidebar: | |
| st.title(':orange_book: BinDoc GmbH') | |
| api_key = os.getenv("OPENAI_API_KEY") | |
| # Retrieve the API key from st.secrets | |
| if not api_key: | |
| st.warning('API key is required to proceed.') | |
| st.stop() # Stop the app if the API key is not provided | |
| st.markdown("Experience the future of document interaction with the revolutionary") | |
| st.markdown("**BinDocs Chat App**.") | |
| st.markdown("Harnessing the power of a Large Language Model and AI technology,") | |
| st.markdown("this innovative platform redefines PDF engagement,") | |
| st.markdown("enabling dynamic conversations that bridge the gap between") | |
| st.markdown("human and machine intelligence.") | |
| add_vertical_space(3) # Add more vertical space between text blocks | |
| st.write('Made with ❤️ by BinDoc GmbH') | |
| def load_pdf(file_path): | |
| pdf_reader = PdfReader(file_path) | |
| chunks = [] | |
| for page in pdf_reader.pages: | |
| text = page.extract_text() | |
| if text: | |
| chunks.append(text) | |
| store_name = file_path.name[:-4] | |
| if os.path.exists(f"{store_name}.pkl"): | |
| with open(f"{store_name}.pkl", "rb") as f: | |
| VectorStore = pickle.load(f) | |
| else: | |
| embeddings = OpenAIEmbeddings() | |
| VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
| with open(f"{store_name}.pkl", "wb") as f: | |
| pickle.dump(VectorStore, f) | |
| return VectorStore | |
| def load_chatbot(max_tokens=300): | |
| return load_qa_chain(llm=OpenAI(temperature=0.1, max_tokens=max_tokens), chain_type="stuff") | |
| def display_chat_history(chat_history): | |
| for chat in chat_history: | |
| background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" | |
| st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
| def remove_incomplete_sentences(text): | |
| sentences = sent_tokenize(text) | |
| complete_sentences = [sent for sent in sentences if sent.endswith(('.', '!', '?'))] | |
| return ' '.join(complete_sentences) | |
| def remove_redundant_information(text): | |
| sentences = sent_tokenize(text) | |
| unique_sentences = list(set(sentences)) | |
| return ' '.join(unique_sentences) | |
| # Define a maximum token limit to avoid infinite loops | |
| MAX_TOKEN_LIMIT = 400 | |
| import random | |
| def main(): | |
| st.title("BinDocs Chat App") | |
| # Step 1: Adding CSS for rounded boxes | |
| st.markdown(""" | |
| <style> | |
| .question-box { | |
| border: 1px solid orange; | |
| border-radius: 15px; | |
| padding: 10px; | |
| text-align: center; | |
| cursor: pointer; | |
| display: inline-block; | |
| width: 45%; | |
| margin: 2%; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| if "chat_history" not in st.session_state: | |
| st.session_state['chat_history'] = [] | |
| display_chat_history(st.session_state['chat_history']) | |
| new_messages_placeholder = st.empty() | |
| pdf = st.file_uploader("Upload your PDF", type="pdf") | |
| query = st.text_input("Ask questions about your PDF file (in any preferred language):") | |
| if st.button("Ask") or (query and query != st.session_state.get('last_input', '')): | |
| if pdf is not None: | |
| st.session_state['last_input'] = query | |
| st.session_state['chat_history'].append(("User", query, "new")) | |
| loading_message = st.empty() | |
| loading_message.text('Bot is thinking...') | |
| VectorStore = load_pdf(pdf) | |
| max_tokens = 120 | |
| chain = load_chatbot(max_tokens=max_tokens) | |
| docs = VectorStore.similarity_search(query=query, k=2) | |
| with get_openai_callback() as cb: | |
| response = chain.run(input_documents=docs, question=query) | |
| # Post-processing to remove incomplete sentences and redundant information | |
| filtered_response = remove_incomplete_sentences(response) | |
| filtered_response = remove_redundant_information(filtered_response) | |
| st.session_state['chat_history'].append(("Bot", filtered_response, "new")) | |
| new_messages = st.session_state['chat_history'][-2:] | |
| for chat in new_messages: | |
| background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" | |
| new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
| st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True) | |
| loading_message.empty() | |
| query = "" | |
| else: | |
| st.warning("Please upload a PDF file before asking questions.") | |
| st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']] | |
| # Displaying example questions | |
| if not st.session_state['chat_history']: | |
| st.markdown(""" | |
| <div class="question-box" id="question1">Was genau ist ein Belegarzt?</div> | |
| <div class="question-box" id="question2">Wofür wird die Alpha-ID verwendet?</div> | |
| <br> | |
| <div class="question-box" id="question3">Was sind die Vorteile des ambulanten operierens?</div> | |
| """, unsafe_allow_html=True) | |
| my_component() | |
| if __name__ == "__main__": | |
| main() |