Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pickle | |
| from PyPDF2 import PdfReader | |
| from streamlit_extras.add_vertical_space import add_vertical_space | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.embeddings.openai import OpenAIEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.llms import OpenAI | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.callbacks import get_openai_callback | |
| import os | |
| # Sidebar contents | |
| with st.sidebar: | |
| st.title(':orange_book: BinDoc GmbH') | |
| st.markdown( | |
| "Experience the future of document interaction with the revolutionary" | |
| ) | |
| st.markdown("**BinDocs Chat App**.") | |
| st.markdown("Harnessing the power of a Large Language Model and AI technology,") | |
| st.markdown("this innovative platform redefines PDF engagement,") | |
| st.markdown("enabling dynamic conversations that bridge the gap between") | |
| st.markdown("human and machine intelligence.") | |
| add_vertical_space(3) # Add more vertical space between text blocks | |
| st.write('Made with ❤️ by Anne') | |
| # API key input (this will not display the entered text) | |
| api_key = st.text_input('Enter your OpenAI API Key:', type='password') | |
| if api_key: | |
| os.environ['OPENAI_API_KEY'] = api_key | |
| else: | |
| st.warning('API key is required to proceed.') | |
| def load_pdf(file_path): | |
| pdf_reader = PdfReader(file_path) | |
| text = "" | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=1000, | |
| chunk_overlap=200, | |
| length_function=len | |
| ) | |
| chunks = text_splitter.split_text(text=text) | |
| store_name = file_path.name[:-4] | |
| if os.path.exists(f"{store_name}.pkl"): | |
| with open(f"{store_name}.pkl", "rb") as f: | |
| VectorStore = pickle.load(f) | |
| else: | |
| embeddings = OpenAIEmbeddings() # No api_key parameter here | |
| VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
| with open(f"{store_name}.pkl", "wb") as f: | |
| pickle.dump(VectorStore, f) | |
| return VectorStore | |
| def load_chatbot(): | |
| return load_qa_chain(llm=OpenAI(), chain_type="stuff") | |
| def main(): | |
| st.title("BinDocs Chat App") | |
| pdf = st.file_uploader("Upload your PDF", type="pdf") | |
| if "chat_history" not in st.session_state: | |
| st.session_state['chat_history'] = [] | |
| if "current_input" not in st.session_state: | |
| st.session_state['current_input'] = "" | |
| display_chat_history(st.session_state['chat_history']) | |
| st.write("<!-- Start Spacer -->", unsafe_allow_html=True) | |
| st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True) | |
| st.write("<!-- End Spacer -->", unsafe_allow_html=True) | |
| if pdf is not None: | |
| query = st.text_input("Ask questions about your PDF file (in any preferred language):", value=st.session_state['current_input']) | |
| if st.button("Ask"): | |
| st.session_state['current_input'] = query | |
| st.session_state['chat_history'].append(("User", query, "new")) | |
| loading_message = st.empty() | |
| loading_message.text('Bot is thinking...') | |
| VectorStore = load_pdf(pdf) | |
| chain = load_chatbot() | |
| docs = VectorStore.similarity_search(query=query, k=3) | |
| with get_openai_callback() as cb: | |
| response = chain.run(input_documents=docs, question=query) | |
| # Display the bot's response immediately using JavaScript | |
| st.write(f"<div id='response' style='background-color: #caf; padding: 10px; border-radius: 10px; margin: 10px;'>Bot: {response}</div>", unsafe_allow_html=True) | |
| st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True) | |
| loading_message.empty() | |
| # Mark all messages as old after displaying | |
| st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']] | |
| def display_chat_history(chat_history): | |
| for chat in chat_history: | |
| background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" | |
| st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
| if __name__ == "__main__": | |
| main() |