Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,32 +12,36 @@ import os
|
|
| 12 |
|
| 13 |
# Sidebar contents
|
| 14 |
with st.sidebar:
|
| 15 |
-
st.title(':
|
| 16 |
st.markdown(
|
| 17 |
"Experience the future of document interaction with the revolutionary"
|
| 18 |
)
|
| 19 |
|
| 20 |
st.markdown("**BinDocs Chat App**.")
|
| 21 |
|
| 22 |
-
|
| 23 |
st.markdown("Harnessing the power of a Large Language Model and AI technology,")
|
| 24 |
-
|
| 25 |
-
|
| 26 |
|
| 27 |
st.markdown("this innovative platform redefines PDF engagement,")
|
| 28 |
|
| 29 |
st.markdown("enabling dynamic conversations that bridge the gap between")
|
| 30 |
st.markdown("human and machine intelligence.")
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
add_vertical_space(3) # Add more vertical space between text blocks
|
| 35 |
st.write('Made with ❤️ by Anne')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
# User input for the OpenAI API key
|
| 38 |
-
openai_api_key = st.text_input("Enter your OpenAI API key:")
|
| 39 |
|
| 40 |
-
|
|
|
|
| 41 |
pdf_reader = PdfReader(file_path)
|
| 42 |
text = ""
|
| 43 |
for page in pdf_reader.pages:
|
|
@@ -56,18 +60,15 @@ def load_pdf(file_path, openai_api_key):
|
|
| 56 |
with open(f"{store_name}.pkl", "rb") as f:
|
| 57 |
VectorStore = pickle.load(f)
|
| 58 |
else:
|
| 59 |
-
embeddings = OpenAIEmbeddings(
|
| 60 |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
| 61 |
with open(f"{store_name}.pkl", "wb") as f:
|
| 62 |
pickle.dump(VectorStore, f)
|
| 63 |
|
| 64 |
return VectorStore
|
| 65 |
|
| 66 |
-
def load_chatbot(
|
| 67 |
-
|
| 68 |
-
"api_key": openai_api_key
|
| 69 |
-
}
|
| 70 |
-
return load_qa_chain(llm=OpenAI(config=openai_config), chain_type="stuff")
|
| 71 |
|
| 72 |
def main():
|
| 73 |
st.title("BinDocs Chat App")
|
|
@@ -80,12 +81,6 @@ def main():
|
|
| 80 |
if "current_input" not in st.session_state:
|
| 81 |
st.session_state['current_input'] = ""
|
| 82 |
|
| 83 |
-
if "processing_input" not in st.session_state:
|
| 84 |
-
st.session_state['processing_input'] = ""
|
| 85 |
-
|
| 86 |
-
# Pass the openai_api_key parameter here
|
| 87 |
-
VectorStore = load_pdf(pdf, openai_api_key)
|
| 88 |
-
|
| 89 |
display_chat_history(st.session_state['chat_history'])
|
| 90 |
|
| 91 |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
|
@@ -95,21 +90,18 @@ def main():
|
|
| 95 |
if pdf is not None:
|
| 96 |
query = st.text_input("Ask questions about your PDF file (in any preferred language):", value=st.session_state['current_input'])
|
| 97 |
|
| 98 |
-
if query != st.session_state['current_input']:
|
| 99 |
-
st.session_state['current_input'] = query
|
| 100 |
-
|
| 101 |
if st.button("Ask"):
|
| 102 |
-
st.session_state['
|
| 103 |
-
st.session_state['chat_history'].append(("User",
|
| 104 |
|
| 105 |
loading_message = st.empty()
|
| 106 |
loading_message.text('Bot is thinking...')
|
| 107 |
|
| 108 |
-
VectorStore = load_pdf(pdf
|
| 109 |
-
chain = load_chatbot(
|
| 110 |
-
docs = VectorStore.similarity_search(query=
|
| 111 |
with get_openai_callback() as cb:
|
| 112 |
-
response = chain.run(input_documents=docs, question=
|
| 113 |
|
| 114 |
# Display the bot's response immediately using JavaScript
|
| 115 |
st.write(f"<div id='response' style='background-color: #caf; padding: 10px; border-radius: 10px; margin: 10px;'>Bot: {response}</div>", unsafe_allow_html=True)
|
|
@@ -120,5 +112,10 @@ def main():
|
|
| 120 |
# Mark all messages as old after displaying
|
| 121 |
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
if __name__ == "__main__":
|
| 124 |
-
main()
|
|
|
|
| 12 |
|
| 13 |
# Sidebar contents
|
| 14 |
with st.sidebar:
|
| 15 |
+
st.title(':orange_book: BinDoc GmbH')
|
| 16 |
st.markdown(
|
| 17 |
"Experience the future of document interaction with the revolutionary"
|
| 18 |
)
|
| 19 |
|
| 20 |
st.markdown("**BinDocs Chat App**.")
|
| 21 |
|
|
|
|
| 22 |
st.markdown("Harnessing the power of a Large Language Model and AI technology,")
|
|
|
|
|
|
|
| 23 |
|
| 24 |
st.markdown("this innovative platform redefines PDF engagement,")
|
| 25 |
|
| 26 |
st.markdown("enabling dynamic conversations that bridge the gap between")
|
| 27 |
st.markdown("human and machine intelligence.")
|
| 28 |
|
|
|
|
|
|
|
| 29 |
add_vertical_space(3) # Add more vertical space between text blocks
|
| 30 |
st.write('Made with ❤️ by Anne')
|
| 31 |
+
|
| 32 |
+
# API key input (this will not display the entered text)
|
| 33 |
+
api_key = st.text_input('Enter your OpenAI API Key:', type='password')
|
| 34 |
+
|
| 35 |
+
if api_key:
|
| 36 |
+
os.environ['OPENAI_API_KEY'] = api_key
|
| 37 |
+
else:
|
| 38 |
+
st.warning('API key is required to proceed.')
|
| 39 |
+
|
| 40 |
+
|
| 41 |
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
|
| 44 |
+
def load_pdf(file_path):
|
| 45 |
pdf_reader = PdfReader(file_path)
|
| 46 |
text = ""
|
| 47 |
for page in pdf_reader.pages:
|
|
|
|
| 60 |
with open(f"{store_name}.pkl", "rb") as f:
|
| 61 |
VectorStore = pickle.load(f)
|
| 62 |
else:
|
| 63 |
+
embeddings = OpenAIEmbeddings()
|
| 64 |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
| 65 |
with open(f"{store_name}.pkl", "wb") as f:
|
| 66 |
pickle.dump(VectorStore, f)
|
| 67 |
|
| 68 |
return VectorStore
|
| 69 |
|
| 70 |
+
def load_chatbot():
|
| 71 |
+
return load_qa_chain(llm=OpenAI(), chain_type="stuff")
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
def main():
|
| 74 |
st.title("BinDocs Chat App")
|
|
|
|
| 81 |
if "current_input" not in st.session_state:
|
| 82 |
st.session_state['current_input'] = ""
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
display_chat_history(st.session_state['chat_history'])
|
| 85 |
|
| 86 |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
|
|
|
| 90 |
if pdf is not None:
|
| 91 |
query = st.text_input("Ask questions about your PDF file (in any preferred language):", value=st.session_state['current_input'])
|
| 92 |
|
|
|
|
|
|
|
|
|
|
| 93 |
if st.button("Ask"):
|
| 94 |
+
st.session_state['current_input'] = query
|
| 95 |
+
st.session_state['chat_history'].append(("User", query, "new"))
|
| 96 |
|
| 97 |
loading_message = st.empty()
|
| 98 |
loading_message.text('Bot is thinking...')
|
| 99 |
|
| 100 |
+
VectorStore = load_pdf(pdf)
|
| 101 |
+
chain = load_chatbot()
|
| 102 |
+
docs = VectorStore.similarity_search(query=query, k=3)
|
| 103 |
with get_openai_callback() as cb:
|
| 104 |
+
response = chain.run(input_documents=docs, question=query)
|
| 105 |
|
| 106 |
# Display the bot's response immediately using JavaScript
|
| 107 |
st.write(f"<div id='response' style='background-color: #caf; padding: 10px; border-radius: 10px; margin: 10px;'>Bot: {response}</div>", unsafe_allow_html=True)
|
|
|
|
| 112 |
# Mark all messages as old after displaying
|
| 113 |
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
|
| 114 |
|
| 115 |
+
def display_chat_history(chat_history):
|
| 116 |
+
for chat in chat_history:
|
| 117 |
+
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
|
| 118 |
+
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
| 119 |
+
|
| 120 |
if __name__ == "__main__":
|
| 121 |
+
main()
|