Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import textwrap | |
| import torch | |
| from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
| DEVICE = torch.device("cpu") | |
| # Load GPT-2 model and tokenizer | |
| tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2') | |
| model_finetuned = GPT2LMHeadModel.from_pretrained( | |
| 'sberbank-ai/rugpt3small_based_on_gpt2', | |
| output_attentions = False, | |
| output_hidden_states = False, | |
| ) | |
| if torch.cuda.is_available(): | |
| model_finetuned.load_state_dict(torch.load('models/mayakovsky.pt')) | |
| else: | |
| model_finetuned.load_state_dict(torch.load('models/mayakovsky.pt', map_location=torch.device('cpu'))) | |
| model_finetuned.eval() | |
| # Function to generate text | |
| def generate_text(prompt, temperature, top_p, max_length, top_k): | |
| input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
| with torch.no_grad(): | |
| out = model_finetuned.generate( | |
| input_ids, | |
| do_sample=True, | |
| num_beams=5, | |
| temperature=temperature, | |
| top_p=top_p, | |
| max_length=max_length, | |
| top_k=top_k, | |
| no_repeat_ngram_size=3, | |
| num_return_sequences=1, | |
| ) | |
| generated_text = list(map(tokenizer.decode, out)) | |
| return generated_text | |
| # Streamlit app | |
| def main(): | |
| st.title("Генерация текста GPT-моделью в стиле В.В. Маяковского") | |
| # User inputs | |
| prompt = st.text_area("Введите начало текста") | |
| temperature = st.slider("Temperature", min_value=0.2, max_value=2.5, value=1.8, step=0.1) | |
| top_p = st.slider("Top-p", min_value=0.1, max_value=1.0, value=0.9, step=0.1) | |
| max_length = st.slider("Max Length", min_value=10, max_value=300, value=100, step=10) | |
| top_k = st.slider("Top-k", min_value=1, max_value=500, value=500, step=10) | |
| num_return_sequences = st.slider("Number of Sequences", min_value=1, max_value=5, value=1, step=1) | |
| if st.button("Generate Text"): | |
| st.subheader("Generated Text:") | |
| for i in range(num_return_sequences): | |
| generated_text = generate_text(prompt, temperature, top_p, max_length, top_k) | |
| st.write(f"Generated Text {i + 1}:") | |
| wrapped_text = textwrap.fill(generated_text[0], width=80) | |
| st.write(wrapped_text) | |
| st.write("------------------") | |
| st.sidebar.image('images/mayakovsky.jpeg', use_column_width=True) | |
| if __name__ == "__main__": | |
| main() |