Spaces:
Runtime error
Runtime error
Anton
commited on
Commit
·
aade6d7
1
Parent(s):
754fbbf
Add application file
Browse files- .DS_Store +0 -0
- file/lstm_preprocessing.py +160 -0
- function/lstm_preprocessing.py +160 -0
- images/lstm_preprocessing.py +160 -0
- models/lstm_preprocessing.py +160 -0
- pages/lstm_preprocessing.py +160 -0
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
file/lstm_preprocessing.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import string
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from transformers import BertTokenizer, BertModel
|
| 7 |
+
from sklearn.linear_model import LogisticRegression
|
| 8 |
+
from nltk.stem import SnowballStemmer
|
| 9 |
+
|
| 10 |
+
from nltk.corpus import stopwords
|
| 11 |
+
stop_words = set(stopwords.words('english'))
|
| 12 |
+
stemmer = SnowballStemmer('russian')
|
| 13 |
+
sw = stopwords.words('russian')
|
| 14 |
+
|
| 15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
| 16 |
+
|
| 17 |
+
class LSTMClassifier(nn.Module):
|
| 18 |
+
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
|
| 19 |
+
super().__init__()
|
| 20 |
+
|
| 21 |
+
self.embedding_dim = embedding_dim
|
| 22 |
+
self.hidden_size = hidden_size
|
| 23 |
+
self.embedding = embedding
|
| 24 |
+
|
| 25 |
+
self.lstm = nn.LSTM(
|
| 26 |
+
input_size=self.embedding_dim,
|
| 27 |
+
hidden_size=self.hidden_size,
|
| 28 |
+
batch_first=True
|
| 29 |
+
)
|
| 30 |
+
self.clf = nn.Linear(self.hidden_size, 1)
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
embeddings = self.embedding(x)
|
| 34 |
+
_, (h_n, _) = self.lstm(embeddings)
|
| 35 |
+
out = self.clf(h_n.squeeze())
|
| 36 |
+
return out
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def data_preprocessing(text: str) -> str:
|
| 40 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
| 41 |
+
stopwords, digits
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
text (str): input string for preprocessing
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
str: preprocessed string
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
text = text.lower()
|
| 51 |
+
text = re.sub('<.*?>', '', text) # html tags
|
| 52 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
| 53 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
| 54 |
+
text = [word for word in text.split() if not word.isdigit()]
|
| 55 |
+
text = ' '.join(text)
|
| 56 |
+
return text
|
| 57 |
+
|
| 58 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
| 59 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
| 60 |
+
|
| 61 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
| 62 |
+
"""Make left-sided padding for input list of tokens
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
review_int (list): input list of tokens
|
| 66 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
np.array: padded sequences
|
| 70 |
+
"""
|
| 71 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
| 72 |
+
for i, review in enumerate(review_int):
|
| 73 |
+
if len(review) <= seq_len:
|
| 74 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
| 75 |
+
new = zeros + review
|
| 76 |
+
else:
|
| 77 |
+
new = review[: seq_len]
|
| 78 |
+
features[i, :] = np.array(new)
|
| 79 |
+
|
| 80 |
+
return features
|
| 81 |
+
|
| 82 |
+
def preprocess_single_string(
|
| 83 |
+
input_string: str,
|
| 84 |
+
seq_len: int,
|
| 85 |
+
vocab_to_int: dict,
|
| 86 |
+
) -> torch.tensor:
|
| 87 |
+
"""Function for all preprocessing steps on a single string
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
input_string (str): input single string for preprocessing
|
| 91 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 92 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
list: preprocessed string
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
preprocessed_string = data_preprocessing(input_string)
|
| 99 |
+
result_list = []
|
| 100 |
+
for word in preprocessed_string.split():
|
| 101 |
+
try:
|
| 102 |
+
result_list.append(vocab_to_int[word])
|
| 103 |
+
except KeyError as e:
|
| 104 |
+
print(f'{e}: not in dictionary!')
|
| 105 |
+
result_padded = padding([result_list], seq_len)[0]
|
| 106 |
+
|
| 107 |
+
return torch.tensor(result_padded)
|
| 108 |
+
|
| 109 |
+
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
|
| 110 |
+
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
|
| 111 |
+
model.eval()
|
| 112 |
+
pred = model(p_str)
|
| 113 |
+
output = pred.sigmoid().round().item()
|
| 114 |
+
if output == 0:
|
| 115 |
+
return 'Негативный отзыв'
|
| 116 |
+
else:
|
| 117 |
+
return 'Позитивный отзыв'
|
| 118 |
+
|
| 119 |
+
def predict_single_string(text: str,
|
| 120 |
+
model: BertModel,
|
| 121 |
+
loaded_model: LogisticRegression
|
| 122 |
+
) -> str:
|
| 123 |
+
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 126 |
+
output = model(**encoded_input)
|
| 127 |
+
vector = output[0][:,0,:]
|
| 128 |
+
pred0 = loaded_model.predict_proba(vector)[0][0]
|
| 129 |
+
pred1 = loaded_model.predict_proba(vector)[0][1]
|
| 130 |
+
if pred0 > pred1:
|
| 131 |
+
return 'Негативный отзыв'
|
| 132 |
+
else:
|
| 133 |
+
return 'Позитивный отзыв'
|
| 134 |
+
|
| 135 |
+
def clean(text):
|
| 136 |
+
|
| 137 |
+
text = text.lower()
|
| 138 |
+
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
|
| 139 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
| 140 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
|
| 141 |
+
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
|
| 142 |
+
|
| 143 |
+
return text
|
| 144 |
+
|
| 145 |
+
def tokin(text):
|
| 146 |
+
text = clean(text)
|
| 147 |
+
text = ' '.join([stemmer.stem(word) for word in text.split()])
|
| 148 |
+
text = ' '.join([word for word in text.split() if word not in sw])
|
| 149 |
+
return text
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
|
| 153 |
+
|
| 154 |
+
t = tokin(text).split(' ')
|
| 155 |
+
new_text_bow = loaded_vectorizer.transform(t)
|
| 156 |
+
predicted_label = loaded_classifier.predict(new_text_bow)
|
| 157 |
+
if predicted_label == 0:
|
| 158 |
+
return 'Негативный отзыв'
|
| 159 |
+
else:
|
| 160 |
+
return 'Позитивный отзыв'
|
function/lstm_preprocessing.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import string
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from transformers import BertTokenizer, BertModel
|
| 7 |
+
from sklearn.linear_model import LogisticRegression
|
| 8 |
+
from nltk.stem import SnowballStemmer
|
| 9 |
+
|
| 10 |
+
from nltk.corpus import stopwords
|
| 11 |
+
stop_words = set(stopwords.words('english'))
|
| 12 |
+
stemmer = SnowballStemmer('russian')
|
| 13 |
+
sw = stopwords.words('russian')
|
| 14 |
+
|
| 15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
| 16 |
+
|
| 17 |
+
class LSTMClassifier(nn.Module):
|
| 18 |
+
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
|
| 19 |
+
super().__init__()
|
| 20 |
+
|
| 21 |
+
self.embedding_dim = embedding_dim
|
| 22 |
+
self.hidden_size = hidden_size
|
| 23 |
+
self.embedding = embedding
|
| 24 |
+
|
| 25 |
+
self.lstm = nn.LSTM(
|
| 26 |
+
input_size=self.embedding_dim,
|
| 27 |
+
hidden_size=self.hidden_size,
|
| 28 |
+
batch_first=True
|
| 29 |
+
)
|
| 30 |
+
self.clf = nn.Linear(self.hidden_size, 1)
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
embeddings = self.embedding(x)
|
| 34 |
+
_, (h_n, _) = self.lstm(embeddings)
|
| 35 |
+
out = self.clf(h_n.squeeze())
|
| 36 |
+
return out
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def data_preprocessing(text: str) -> str:
|
| 40 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
| 41 |
+
stopwords, digits
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
text (str): input string for preprocessing
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
str: preprocessed string
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
text = text.lower()
|
| 51 |
+
text = re.sub('<.*?>', '', text) # html tags
|
| 52 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
| 53 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
| 54 |
+
text = [word for word in text.split() if not word.isdigit()]
|
| 55 |
+
text = ' '.join(text)
|
| 56 |
+
return text
|
| 57 |
+
|
| 58 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
| 59 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
| 60 |
+
|
| 61 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
| 62 |
+
"""Make left-sided padding for input list of tokens
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
review_int (list): input list of tokens
|
| 66 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
np.array: padded sequences
|
| 70 |
+
"""
|
| 71 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
| 72 |
+
for i, review in enumerate(review_int):
|
| 73 |
+
if len(review) <= seq_len:
|
| 74 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
| 75 |
+
new = zeros + review
|
| 76 |
+
else:
|
| 77 |
+
new = review[: seq_len]
|
| 78 |
+
features[i, :] = np.array(new)
|
| 79 |
+
|
| 80 |
+
return features
|
| 81 |
+
|
| 82 |
+
def preprocess_single_string(
|
| 83 |
+
input_string: str,
|
| 84 |
+
seq_len: int,
|
| 85 |
+
vocab_to_int: dict,
|
| 86 |
+
) -> torch.tensor:
|
| 87 |
+
"""Function for all preprocessing steps on a single string
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
input_string (str): input single string for preprocessing
|
| 91 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 92 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
list: preprocessed string
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
preprocessed_string = data_preprocessing(input_string)
|
| 99 |
+
result_list = []
|
| 100 |
+
for word in preprocessed_string.split():
|
| 101 |
+
try:
|
| 102 |
+
result_list.append(vocab_to_int[word])
|
| 103 |
+
except KeyError as e:
|
| 104 |
+
print(f'{e}: not in dictionary!')
|
| 105 |
+
result_padded = padding([result_list], seq_len)[0]
|
| 106 |
+
|
| 107 |
+
return torch.tensor(result_padded)
|
| 108 |
+
|
| 109 |
+
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
|
| 110 |
+
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
|
| 111 |
+
model.eval()
|
| 112 |
+
pred = model(p_str)
|
| 113 |
+
output = pred.sigmoid().round().item()
|
| 114 |
+
if output == 0:
|
| 115 |
+
return 'Негативный отзыв'
|
| 116 |
+
else:
|
| 117 |
+
return 'Позитивный отзыв'
|
| 118 |
+
|
| 119 |
+
def predict_single_string(text: str,
|
| 120 |
+
model: BertModel,
|
| 121 |
+
loaded_model: LogisticRegression
|
| 122 |
+
) -> str:
|
| 123 |
+
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 126 |
+
output = model(**encoded_input)
|
| 127 |
+
vector = output[0][:,0,:]
|
| 128 |
+
pred0 = loaded_model.predict_proba(vector)[0][0]
|
| 129 |
+
pred1 = loaded_model.predict_proba(vector)[0][1]
|
| 130 |
+
if pred0 > pred1:
|
| 131 |
+
return 'Негативный отзыв'
|
| 132 |
+
else:
|
| 133 |
+
return 'Позитивный отзыв'
|
| 134 |
+
|
| 135 |
+
def clean(text):
|
| 136 |
+
|
| 137 |
+
text = text.lower()
|
| 138 |
+
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
|
| 139 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
| 140 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
|
| 141 |
+
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
|
| 142 |
+
|
| 143 |
+
return text
|
| 144 |
+
|
| 145 |
+
def tokin(text):
|
| 146 |
+
text = clean(text)
|
| 147 |
+
text = ' '.join([stemmer.stem(word) for word in text.split()])
|
| 148 |
+
text = ' '.join([word for word in text.split() if word not in sw])
|
| 149 |
+
return text
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
|
| 153 |
+
|
| 154 |
+
t = tokin(text).split(' ')
|
| 155 |
+
new_text_bow = loaded_vectorizer.transform(t)
|
| 156 |
+
predicted_label = loaded_classifier.predict(new_text_bow)
|
| 157 |
+
if predicted_label == 0:
|
| 158 |
+
return 'Негативный отзыв'
|
| 159 |
+
else:
|
| 160 |
+
return 'Позитивный отзыв'
|
images/lstm_preprocessing.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import string
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from transformers import BertTokenizer, BertModel
|
| 7 |
+
from sklearn.linear_model import LogisticRegression
|
| 8 |
+
from nltk.stem import SnowballStemmer
|
| 9 |
+
|
| 10 |
+
from nltk.corpus import stopwords
|
| 11 |
+
stop_words = set(stopwords.words('english'))
|
| 12 |
+
stemmer = SnowballStemmer('russian')
|
| 13 |
+
sw = stopwords.words('russian')
|
| 14 |
+
|
| 15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
| 16 |
+
|
| 17 |
+
class LSTMClassifier(nn.Module):
|
| 18 |
+
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
|
| 19 |
+
super().__init__()
|
| 20 |
+
|
| 21 |
+
self.embedding_dim = embedding_dim
|
| 22 |
+
self.hidden_size = hidden_size
|
| 23 |
+
self.embedding = embedding
|
| 24 |
+
|
| 25 |
+
self.lstm = nn.LSTM(
|
| 26 |
+
input_size=self.embedding_dim,
|
| 27 |
+
hidden_size=self.hidden_size,
|
| 28 |
+
batch_first=True
|
| 29 |
+
)
|
| 30 |
+
self.clf = nn.Linear(self.hidden_size, 1)
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
embeddings = self.embedding(x)
|
| 34 |
+
_, (h_n, _) = self.lstm(embeddings)
|
| 35 |
+
out = self.clf(h_n.squeeze())
|
| 36 |
+
return out
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def data_preprocessing(text: str) -> str:
|
| 40 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
| 41 |
+
stopwords, digits
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
text (str): input string for preprocessing
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
str: preprocessed string
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
text = text.lower()
|
| 51 |
+
text = re.sub('<.*?>', '', text) # html tags
|
| 52 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
| 53 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
| 54 |
+
text = [word for word in text.split() if not word.isdigit()]
|
| 55 |
+
text = ' '.join(text)
|
| 56 |
+
return text
|
| 57 |
+
|
| 58 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
| 59 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
| 60 |
+
|
| 61 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
| 62 |
+
"""Make left-sided padding for input list of tokens
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
review_int (list): input list of tokens
|
| 66 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
np.array: padded sequences
|
| 70 |
+
"""
|
| 71 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
| 72 |
+
for i, review in enumerate(review_int):
|
| 73 |
+
if len(review) <= seq_len:
|
| 74 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
| 75 |
+
new = zeros + review
|
| 76 |
+
else:
|
| 77 |
+
new = review[: seq_len]
|
| 78 |
+
features[i, :] = np.array(new)
|
| 79 |
+
|
| 80 |
+
return features
|
| 81 |
+
|
| 82 |
+
def preprocess_single_string(
|
| 83 |
+
input_string: str,
|
| 84 |
+
seq_len: int,
|
| 85 |
+
vocab_to_int: dict,
|
| 86 |
+
) -> torch.tensor:
|
| 87 |
+
"""Function for all preprocessing steps on a single string
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
input_string (str): input single string for preprocessing
|
| 91 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 92 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
list: preprocessed string
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
preprocessed_string = data_preprocessing(input_string)
|
| 99 |
+
result_list = []
|
| 100 |
+
for word in preprocessed_string.split():
|
| 101 |
+
try:
|
| 102 |
+
result_list.append(vocab_to_int[word])
|
| 103 |
+
except KeyError as e:
|
| 104 |
+
print(f'{e}: not in dictionary!')
|
| 105 |
+
result_padded = padding([result_list], seq_len)[0]
|
| 106 |
+
|
| 107 |
+
return torch.tensor(result_padded)
|
| 108 |
+
|
| 109 |
+
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
|
| 110 |
+
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
|
| 111 |
+
model.eval()
|
| 112 |
+
pred = model(p_str)
|
| 113 |
+
output = pred.sigmoid().round().item()
|
| 114 |
+
if output == 0:
|
| 115 |
+
return 'Негативный отзыв'
|
| 116 |
+
else:
|
| 117 |
+
return 'Позитивный отзыв'
|
| 118 |
+
|
| 119 |
+
def predict_single_string(text: str,
|
| 120 |
+
model: BertModel,
|
| 121 |
+
loaded_model: LogisticRegression
|
| 122 |
+
) -> str:
|
| 123 |
+
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 126 |
+
output = model(**encoded_input)
|
| 127 |
+
vector = output[0][:,0,:]
|
| 128 |
+
pred0 = loaded_model.predict_proba(vector)[0][0]
|
| 129 |
+
pred1 = loaded_model.predict_proba(vector)[0][1]
|
| 130 |
+
if pred0 > pred1:
|
| 131 |
+
return 'Негативный отзыв'
|
| 132 |
+
else:
|
| 133 |
+
return 'Позитивный отзыв'
|
| 134 |
+
|
| 135 |
+
def clean(text):
|
| 136 |
+
|
| 137 |
+
text = text.lower()
|
| 138 |
+
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
|
| 139 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
| 140 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
|
| 141 |
+
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
|
| 142 |
+
|
| 143 |
+
return text
|
| 144 |
+
|
| 145 |
+
def tokin(text):
|
| 146 |
+
text = clean(text)
|
| 147 |
+
text = ' '.join([stemmer.stem(word) for word in text.split()])
|
| 148 |
+
text = ' '.join([word for word in text.split() if word not in sw])
|
| 149 |
+
return text
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
|
| 153 |
+
|
| 154 |
+
t = tokin(text).split(' ')
|
| 155 |
+
new_text_bow = loaded_vectorizer.transform(t)
|
| 156 |
+
predicted_label = loaded_classifier.predict(new_text_bow)
|
| 157 |
+
if predicted_label == 0:
|
| 158 |
+
return 'Негативный отзыв'
|
| 159 |
+
else:
|
| 160 |
+
return 'Позитивный отзыв'
|
models/lstm_preprocessing.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import string
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from transformers import BertTokenizer, BertModel
|
| 7 |
+
from sklearn.linear_model import LogisticRegression
|
| 8 |
+
from nltk.stem import SnowballStemmer
|
| 9 |
+
|
| 10 |
+
from nltk.corpus import stopwords
|
| 11 |
+
stop_words = set(stopwords.words('english'))
|
| 12 |
+
stemmer = SnowballStemmer('russian')
|
| 13 |
+
sw = stopwords.words('russian')
|
| 14 |
+
|
| 15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
| 16 |
+
|
| 17 |
+
class LSTMClassifier(nn.Module):
|
| 18 |
+
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
|
| 19 |
+
super().__init__()
|
| 20 |
+
|
| 21 |
+
self.embedding_dim = embedding_dim
|
| 22 |
+
self.hidden_size = hidden_size
|
| 23 |
+
self.embedding = embedding
|
| 24 |
+
|
| 25 |
+
self.lstm = nn.LSTM(
|
| 26 |
+
input_size=self.embedding_dim,
|
| 27 |
+
hidden_size=self.hidden_size,
|
| 28 |
+
batch_first=True
|
| 29 |
+
)
|
| 30 |
+
self.clf = nn.Linear(self.hidden_size, 1)
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
embeddings = self.embedding(x)
|
| 34 |
+
_, (h_n, _) = self.lstm(embeddings)
|
| 35 |
+
out = self.clf(h_n.squeeze())
|
| 36 |
+
return out
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def data_preprocessing(text: str) -> str:
|
| 40 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
| 41 |
+
stopwords, digits
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
text (str): input string for preprocessing
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
str: preprocessed string
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
text = text.lower()
|
| 51 |
+
text = re.sub('<.*?>', '', text) # html tags
|
| 52 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
| 53 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
| 54 |
+
text = [word for word in text.split() if not word.isdigit()]
|
| 55 |
+
text = ' '.join(text)
|
| 56 |
+
return text
|
| 57 |
+
|
| 58 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
| 59 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
| 60 |
+
|
| 61 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
| 62 |
+
"""Make left-sided padding for input list of tokens
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
review_int (list): input list of tokens
|
| 66 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
np.array: padded sequences
|
| 70 |
+
"""
|
| 71 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
| 72 |
+
for i, review in enumerate(review_int):
|
| 73 |
+
if len(review) <= seq_len:
|
| 74 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
| 75 |
+
new = zeros + review
|
| 76 |
+
else:
|
| 77 |
+
new = review[: seq_len]
|
| 78 |
+
features[i, :] = np.array(new)
|
| 79 |
+
|
| 80 |
+
return features
|
| 81 |
+
|
| 82 |
+
def preprocess_single_string(
|
| 83 |
+
input_string: str,
|
| 84 |
+
seq_len: int,
|
| 85 |
+
vocab_to_int: dict,
|
| 86 |
+
) -> torch.tensor:
|
| 87 |
+
"""Function for all preprocessing steps on a single string
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
input_string (str): input single string for preprocessing
|
| 91 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 92 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
list: preprocessed string
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
preprocessed_string = data_preprocessing(input_string)
|
| 99 |
+
result_list = []
|
| 100 |
+
for word in preprocessed_string.split():
|
| 101 |
+
try:
|
| 102 |
+
result_list.append(vocab_to_int[word])
|
| 103 |
+
except KeyError as e:
|
| 104 |
+
print(f'{e}: not in dictionary!')
|
| 105 |
+
result_padded = padding([result_list], seq_len)[0]
|
| 106 |
+
|
| 107 |
+
return torch.tensor(result_padded)
|
| 108 |
+
|
| 109 |
+
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
|
| 110 |
+
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
|
| 111 |
+
model.eval()
|
| 112 |
+
pred = model(p_str)
|
| 113 |
+
output = pred.sigmoid().round().item()
|
| 114 |
+
if output == 0:
|
| 115 |
+
return 'Негативный отзыв'
|
| 116 |
+
else:
|
| 117 |
+
return 'Позитивный отзыв'
|
| 118 |
+
|
| 119 |
+
def predict_single_string(text: str,
|
| 120 |
+
model: BertModel,
|
| 121 |
+
loaded_model: LogisticRegression
|
| 122 |
+
) -> str:
|
| 123 |
+
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 126 |
+
output = model(**encoded_input)
|
| 127 |
+
vector = output[0][:,0,:]
|
| 128 |
+
pred0 = loaded_model.predict_proba(vector)[0][0]
|
| 129 |
+
pred1 = loaded_model.predict_proba(vector)[0][1]
|
| 130 |
+
if pred0 > pred1:
|
| 131 |
+
return 'Негативный отзыв'
|
| 132 |
+
else:
|
| 133 |
+
return 'Позитивный отзыв'
|
| 134 |
+
|
| 135 |
+
def clean(text):
|
| 136 |
+
|
| 137 |
+
text = text.lower()
|
| 138 |
+
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
|
| 139 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
| 140 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
|
| 141 |
+
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
|
| 142 |
+
|
| 143 |
+
return text
|
| 144 |
+
|
| 145 |
+
def tokin(text):
|
| 146 |
+
text = clean(text)
|
| 147 |
+
text = ' '.join([stemmer.stem(word) for word in text.split()])
|
| 148 |
+
text = ' '.join([word for word in text.split() if word not in sw])
|
| 149 |
+
return text
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
|
| 153 |
+
|
| 154 |
+
t = tokin(text).split(' ')
|
| 155 |
+
new_text_bow = loaded_vectorizer.transform(t)
|
| 156 |
+
predicted_label = loaded_classifier.predict(new_text_bow)
|
| 157 |
+
if predicted_label == 0:
|
| 158 |
+
return 'Негативный отзыв'
|
| 159 |
+
else:
|
| 160 |
+
return 'Позитивный отзыв'
|
pages/lstm_preprocessing.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import string
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from transformers import BertTokenizer, BertModel
|
| 7 |
+
from sklearn.linear_model import LogisticRegression
|
| 8 |
+
from nltk.stem import SnowballStemmer
|
| 9 |
+
|
| 10 |
+
from nltk.corpus import stopwords
|
| 11 |
+
stop_words = set(stopwords.words('english'))
|
| 12 |
+
stemmer = SnowballStemmer('russian')
|
| 13 |
+
sw = stopwords.words('russian')
|
| 14 |
+
|
| 15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
| 16 |
+
|
| 17 |
+
class LSTMClassifier(nn.Module):
|
| 18 |
+
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
|
| 19 |
+
super().__init__()
|
| 20 |
+
|
| 21 |
+
self.embedding_dim = embedding_dim
|
| 22 |
+
self.hidden_size = hidden_size
|
| 23 |
+
self.embedding = embedding
|
| 24 |
+
|
| 25 |
+
self.lstm = nn.LSTM(
|
| 26 |
+
input_size=self.embedding_dim,
|
| 27 |
+
hidden_size=self.hidden_size,
|
| 28 |
+
batch_first=True
|
| 29 |
+
)
|
| 30 |
+
self.clf = nn.Linear(self.hidden_size, 1)
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
embeddings = self.embedding(x)
|
| 34 |
+
_, (h_n, _) = self.lstm(embeddings)
|
| 35 |
+
out = self.clf(h_n.squeeze())
|
| 36 |
+
return out
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def data_preprocessing(text: str) -> str:
|
| 40 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
| 41 |
+
stopwords, digits
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
text (str): input string for preprocessing
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
str: preprocessed string
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
text = text.lower()
|
| 51 |
+
text = re.sub('<.*?>', '', text) # html tags
|
| 52 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
| 53 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
| 54 |
+
text = [word for word in text.split() if not word.isdigit()]
|
| 55 |
+
text = ' '.join(text)
|
| 56 |
+
return text
|
| 57 |
+
|
| 58 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
| 59 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
| 60 |
+
|
| 61 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
| 62 |
+
"""Make left-sided padding for input list of tokens
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
review_int (list): input list of tokens
|
| 66 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
np.array: padded sequences
|
| 70 |
+
"""
|
| 71 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
| 72 |
+
for i, review in enumerate(review_int):
|
| 73 |
+
if len(review) <= seq_len:
|
| 74 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
| 75 |
+
new = zeros + review
|
| 76 |
+
else:
|
| 77 |
+
new = review[: seq_len]
|
| 78 |
+
features[i, :] = np.array(new)
|
| 79 |
+
|
| 80 |
+
return features
|
| 81 |
+
|
| 82 |
+
def preprocess_single_string(
|
| 83 |
+
input_string: str,
|
| 84 |
+
seq_len: int,
|
| 85 |
+
vocab_to_int: dict,
|
| 86 |
+
) -> torch.tensor:
|
| 87 |
+
"""Function for all preprocessing steps on a single string
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
input_string (str): input single string for preprocessing
|
| 91 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 92 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
list: preprocessed string
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
preprocessed_string = data_preprocessing(input_string)
|
| 99 |
+
result_list = []
|
| 100 |
+
for word in preprocessed_string.split():
|
| 101 |
+
try:
|
| 102 |
+
result_list.append(vocab_to_int[word])
|
| 103 |
+
except KeyError as e:
|
| 104 |
+
print(f'{e}: not in dictionary!')
|
| 105 |
+
result_padded = padding([result_list], seq_len)[0]
|
| 106 |
+
|
| 107 |
+
return torch.tensor(result_padded)
|
| 108 |
+
|
| 109 |
+
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
|
| 110 |
+
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
|
| 111 |
+
model.eval()
|
| 112 |
+
pred = model(p_str)
|
| 113 |
+
output = pred.sigmoid().round().item()
|
| 114 |
+
if output == 0:
|
| 115 |
+
return 'Негативный отзыв'
|
| 116 |
+
else:
|
| 117 |
+
return 'Позитивный отзыв'
|
| 118 |
+
|
| 119 |
+
def predict_single_string(text: str,
|
| 120 |
+
model: BertModel,
|
| 121 |
+
loaded_model: LogisticRegression
|
| 122 |
+
) -> str:
|
| 123 |
+
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 126 |
+
output = model(**encoded_input)
|
| 127 |
+
vector = output[0][:,0,:]
|
| 128 |
+
pred0 = loaded_model.predict_proba(vector)[0][0]
|
| 129 |
+
pred1 = loaded_model.predict_proba(vector)[0][1]
|
| 130 |
+
if pred0 > pred1:
|
| 131 |
+
return 'Негативный отзыв'
|
| 132 |
+
else:
|
| 133 |
+
return 'Позитивный отзыв'
|
| 134 |
+
|
| 135 |
+
def clean(text):
|
| 136 |
+
|
| 137 |
+
text = text.lower()
|
| 138 |
+
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
|
| 139 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
| 140 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
|
| 141 |
+
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
|
| 142 |
+
|
| 143 |
+
return text
|
| 144 |
+
|
| 145 |
+
def tokin(text):
|
| 146 |
+
text = clean(text)
|
| 147 |
+
text = ' '.join([stemmer.stem(word) for word in text.split()])
|
| 148 |
+
text = ' '.join([word for word in text.split() if word not in sw])
|
| 149 |
+
return text
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
|
| 153 |
+
|
| 154 |
+
t = tokin(text).split(' ')
|
| 155 |
+
new_text_bow = loaded_vectorizer.transform(t)
|
| 156 |
+
predicted_label = loaded_classifier.predict(new_text_bow)
|
| 157 |
+
if predicted_label == 0:
|
| 158 |
+
return 'Негативный отзыв'
|
| 159 |
+
else:
|
| 160 |
+
return 'Позитивный отзыв'
|