Spaces:
Runtime error
Runtime error
Upload TheBroCode.py
Browse files- pages/TheBroCode.py +64 -0
pages/TheBroCode.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import textwrap
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 5 |
+
|
| 6 |
+
DEVICE = torch.device("cpu")
|
| 7 |
+
# Load GPT-2 model and tokenizer
|
| 8 |
+
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
|
| 9 |
+
model_finetuned = GPT2LMHeadModel.from_pretrained(
|
| 10 |
+
'sberbank-ai/rugpt3small_based_on_gpt2',
|
| 11 |
+
output_attentions = False,
|
| 12 |
+
output_hidden_states = False,
|
| 13 |
+
)
|
| 14 |
+
if torch.cuda.is_available():
|
| 15 |
+
model_finetuned.load_state_dict(torch.load('models/brat.pt'))
|
| 16 |
+
else:
|
| 17 |
+
model_finetuned.load_state_dict(torch.load('models/brat.pt', map_location=torch.device('cpu')))
|
| 18 |
+
model_finetuned.eval()
|
| 19 |
+
|
| 20 |
+
# Function to generate text
|
| 21 |
+
def generate_text(prompt, temperature, top_p, max_length, top_k):
|
| 22 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 23 |
+
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
out = model_finetuned.generate(
|
| 26 |
+
input_ids,
|
| 27 |
+
do_sample=True,
|
| 28 |
+
num_beams=5,
|
| 29 |
+
temperature=temperature,
|
| 30 |
+
top_p=top_p,
|
| 31 |
+
max_length=max_length,
|
| 32 |
+
top_k=top_k,
|
| 33 |
+
no_repeat_ngram_size=3,
|
| 34 |
+
num_return_sequences=1,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
generated_text = list(map(tokenizer.decode, out))
|
| 38 |
+
return generated_text
|
| 39 |
+
|
| 40 |
+
# Streamlit app
|
| 41 |
+
def main():
|
| 42 |
+
st.title("Генерация текста 'Кодекс Братана'")
|
| 43 |
+
|
| 44 |
+
# User inputs
|
| 45 |
+
prompt = st.text_area("Введите начало текста")
|
| 46 |
+
temperature = st.slider("Temperature", min_value=0.2, max_value=2.5, value=1.8, step=0.1)
|
| 47 |
+
top_p = st.slider("Top-p", min_value=0.1, max_value=1.0, value=0.9, step=0.1)
|
| 48 |
+
max_length = st.slider("Max Length", min_value=10, max_value=300, value=100, step=10)
|
| 49 |
+
top_k = st.slider("Top-k", min_value=1, max_value=500, value=500, step=10)
|
| 50 |
+
num_return_sequences = st.slider("Number of Sequences", min_value=1, max_value=5, value=1, step=1)
|
| 51 |
+
|
| 52 |
+
if st.button("Generate Text"):
|
| 53 |
+
st.subheader("Generated Text:")
|
| 54 |
+
for i in range(num_return_sequences):
|
| 55 |
+
generated_text = generate_text(prompt, temperature, top_p, max_length, top_k)
|
| 56 |
+
st.write(f"Generated Text {i + 1}:")
|
| 57 |
+
wrapped_text = textwrap.fill(generated_text[0], width=80)
|
| 58 |
+
st.write(wrapped_text)
|
| 59 |
+
st.write("------------------")
|
| 60 |
+
|
| 61 |
+
st.sidebar.image('images/theBROcode.jpeg', use_column_width=True)
|
| 62 |
+
|
| 63 |
+
if __name__ == "__main__":
|
| 64 |
+
main()
|