Spaces:
Paused
Paused
fix language detection
Browse files- main.py +18 -16
- whisper_streaming_custom/backends.py +78 -1
main.py
CHANGED
|
@@ -17,21 +17,19 @@ import tempfile
|
|
| 17 |
|
| 18 |
from core import WhisperLiveKit
|
| 19 |
from audio_processor import AudioProcessor
|
| 20 |
-
from language_detector import LanguageDetector
|
| 21 |
|
| 22 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 23 |
logging.getLogger().setLevel(logging.WARNING)
|
| 24 |
logger = logging.getLogger(__name__)
|
| 25 |
logger.setLevel(logging.DEBUG)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
language_detector = None
|
| 29 |
|
| 30 |
@asynccontextmanager
|
| 31 |
async def lifespan(app: FastAPI):
|
| 32 |
-
global
|
| 33 |
-
kit = WhisperLiveKit()
|
| 34 |
-
|
| 35 |
yield
|
| 36 |
|
| 37 |
app = FastAPI(lifespan=lifespan)
|
|
@@ -47,8 +45,6 @@ app.add_middleware(
|
|
| 47 |
# Mount static files
|
| 48 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
@app.get("/")
|
| 53 |
async def read_root():
|
| 54 |
return FileResponse("static/index.html")
|
|
@@ -66,9 +62,16 @@ async def detect_language(file: UploadFile = File(...)):
|
|
| 66 |
contents = await file.read()
|
| 67 |
temp_file.write(contents)
|
| 68 |
|
| 69 |
-
# Use the
|
| 70 |
-
if
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
# Clean up - remove the temporary file
|
| 74 |
os.remove(file_path)
|
|
@@ -80,7 +83,7 @@ async def detect_language(file: UploadFile = File(...)):
|
|
| 80 |
})
|
| 81 |
else:
|
| 82 |
return JSONResponse(
|
| 83 |
-
{"error": "
|
| 84 |
status_code=500
|
| 85 |
)
|
| 86 |
|
|
@@ -127,14 +130,15 @@ async def handle_websocket_results(websocket, results_generator):
|
|
| 127 |
@app.websocket("/asr")
|
| 128 |
async def websocket_endpoint(websocket: WebSocket):
|
| 129 |
logger.info("New WebSocket connection request")
|
| 130 |
-
audio_processor = None
|
| 131 |
websocket_task = None
|
| 132 |
|
| 133 |
try:
|
| 134 |
await websocket.accept()
|
| 135 |
logger.info("WebSocket connection accepted")
|
| 136 |
|
| 137 |
-
|
|
|
|
|
|
|
| 138 |
results_generator = await audio_processor.create_tasks()
|
| 139 |
websocket_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
|
| 140 |
|
|
@@ -155,8 +159,6 @@ async def websocket_endpoint(websocket: WebSocket):
|
|
| 155 |
logger.error(f"Error in WebSocket endpoint: {e}")
|
| 156 |
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 157 |
finally:
|
| 158 |
-
if audio_processor:
|
| 159 |
-
await audio_processor.cleanup()
|
| 160 |
if websocket_task:
|
| 161 |
websocket_task.cancel()
|
| 162 |
try:
|
|
|
|
| 17 |
|
| 18 |
from core import WhisperLiveKit
|
| 19 |
from audio_processor import AudioProcessor
|
|
|
|
| 20 |
|
| 21 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 22 |
logging.getLogger().setLevel(logging.WARNING)
|
| 23 |
logger = logging.getLogger(__name__)
|
| 24 |
logger.setLevel(logging.DEBUG)
|
| 25 |
|
| 26 |
+
audio_processor = None
|
|
|
|
| 27 |
|
| 28 |
@asynccontextmanager
|
| 29 |
async def lifespan(app: FastAPI):
|
| 30 |
+
global audio_processor
|
| 31 |
+
kit = WhisperLiveKit(args=args)
|
| 32 |
+
audio_processor = AudioProcessor()
|
| 33 |
yield
|
| 34 |
|
| 35 |
app = FastAPI(lifespan=lifespan)
|
|
|
|
| 45 |
# Mount static files
|
| 46 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 47 |
|
|
|
|
|
|
|
| 48 |
@app.get("/")
|
| 49 |
async def read_root():
|
| 50 |
return FileResponse("static/index.html")
|
|
|
|
| 62 |
contents = await file.read()
|
| 63 |
temp_file.write(contents)
|
| 64 |
|
| 65 |
+
# Use the audio processor for language detection
|
| 66 |
+
if audio_processor:
|
| 67 |
+
# Load audio using librosa
|
| 68 |
+
audio, sr = librosa.load(file_path, sr=16000)
|
| 69 |
+
|
| 70 |
+
# Convert to format expected by Whisper
|
| 71 |
+
audio = (audio * 32768).astype(np.int16)
|
| 72 |
+
|
| 73 |
+
# Detect language
|
| 74 |
+
detected_lang, confidence, probs = audio_processor.detect_language(audio)
|
| 75 |
|
| 76 |
# Clean up - remove the temporary file
|
| 77 |
os.remove(file_path)
|
|
|
|
| 83 |
})
|
| 84 |
else:
|
| 85 |
return JSONResponse(
|
| 86 |
+
{"error": "Audio processor not initialized"},
|
| 87 |
status_code=500
|
| 88 |
)
|
| 89 |
|
|
|
|
| 130 |
@app.websocket("/asr")
|
| 131 |
async def websocket_endpoint(websocket: WebSocket):
|
| 132 |
logger.info("New WebSocket connection request")
|
|
|
|
| 133 |
websocket_task = None
|
| 134 |
|
| 135 |
try:
|
| 136 |
await websocket.accept()
|
| 137 |
logger.info("WebSocket connection accepted")
|
| 138 |
|
| 139 |
+
if not audio_processor:
|
| 140 |
+
raise RuntimeError("Audio processor not initialized")
|
| 141 |
+
|
| 142 |
results_generator = await audio_processor.create_tasks()
|
| 143 |
websocket_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
|
| 144 |
|
|
|
|
| 159 |
logger.error(f"Error in WebSocket endpoint: {e}")
|
| 160 |
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 161 |
finally:
|
|
|
|
|
|
|
| 162 |
if websocket_task:
|
| 163 |
websocket_task.cancel()
|
| 164 |
try:
|
whisper_streaming_custom/backends.py
CHANGED
|
@@ -89,6 +89,42 @@ class WhisperTimestampedASR(ASRBase):
|
|
| 89 |
def set_translate_task(self):
|
| 90 |
self.transcribe_kargs["task"] = "translate"
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
class FasterWhisperASR(ASRBase):
|
| 94 |
"""Uses faster-whisper as the backend."""
|
|
@@ -147,6 +183,41 @@ class FasterWhisperASR(ASRBase):
|
|
| 147 |
def set_translate_task(self):
|
| 148 |
self.transcribe_kargs["task"] = "translate"
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
class MLXWhisper(ASRBase):
|
| 152 |
"""
|
|
@@ -225,6 +296,9 @@ class MLXWhisper(ASRBase):
|
|
| 225 |
|
| 226 |
def set_translate_task(self):
|
| 227 |
self.transcribe_kargs["task"] = "translate"
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
|
| 230 |
class OpenaiApiASR(ASRBase):
|
|
@@ -292,4 +366,7 @@ class OpenaiApiASR(ASRBase):
|
|
| 292 |
self.use_vad_opt = True
|
| 293 |
|
| 294 |
def set_translate_task(self):
|
| 295 |
-
self.task = "translate"
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
def set_translate_task(self):
|
| 90 |
self.transcribe_kargs["task"] = "translate"
|
| 91 |
|
| 92 |
+
def detect_language(self, audio):
|
| 93 |
+
import whisper
|
| 94 |
+
"""
|
| 95 |
+
Detect the language of the audio using Whisper's language detection.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
audio (np.ndarray): Audio data as numpy array
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
tuple: (detected_language, confidence, probabilities)
|
| 102 |
+
- detected_language (str): The detected language code
|
| 103 |
+
- confidence (float): Confidence score for the detected language
|
| 104 |
+
- probabilities (dict): Dictionary of language probabilities
|
| 105 |
+
"""
|
| 106 |
+
try:
|
| 107 |
+
# Ensure audio is in the correct format
|
| 108 |
+
if not isinstance(audio, np.ndarray):
|
| 109 |
+
audio = np.array(audio)
|
| 110 |
+
|
| 111 |
+
# Pad or trim audio to the correct length
|
| 112 |
+
audio = whisper.pad_or_trim(audio)
|
| 113 |
+
|
| 114 |
+
# Create mel spectrogram with correct dimensions
|
| 115 |
+
mel = whisper.log_mel_spectrogram(audio, n_mels=128).to(self.model.device)
|
| 116 |
+
|
| 117 |
+
# Detect language
|
| 118 |
+
_, probs = self.model.detect_language(mel)
|
| 119 |
+
detected_lang = max(probs, key=probs.get)
|
| 120 |
+
confidence = probs[detected_lang]
|
| 121 |
+
|
| 122 |
+
return detected_lang, confidence, probs
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
logger.error(f"Error in language detection: {e}")
|
| 126 |
+
raise
|
| 127 |
+
|
| 128 |
|
| 129 |
class FasterWhisperASR(ASRBase):
|
| 130 |
"""Uses faster-whisper as the backend."""
|
|
|
|
| 183 |
def set_translate_task(self):
|
| 184 |
self.transcribe_kargs["task"] = "translate"
|
| 185 |
|
| 186 |
+
def detect_language(self, audio):
|
| 187 |
+
"""
|
| 188 |
+
Detect the language of the audio using faster-whisper's language detection.
|
| 189 |
+
|
| 190 |
+
Args:
|
| 191 |
+
audio (np.ndarray): Audio data as numpy array
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
tuple: (detected_language, confidence, probabilities)
|
| 195 |
+
- detected_language (str): The detected language code
|
| 196 |
+
- confidence (float): Confidence score for the detected language
|
| 197 |
+
- probabilities (dict): Dictionary of language probabilities
|
| 198 |
+
"""
|
| 199 |
+
try:
|
| 200 |
+
# Ensure audio is in the correct format
|
| 201 |
+
if not isinstance(audio, np.ndarray):
|
| 202 |
+
audio = np.array(audio)
|
| 203 |
+
|
| 204 |
+
# Use faster-whisper's detect_language method
|
| 205 |
+
language, language_probability, all_language_probs = self.model.detect_language(
|
| 206 |
+
audio=audio,
|
| 207 |
+
vad_filter=False, # Disable VAD for language detection
|
| 208 |
+
language_detection_segments=1, # Use single segment for detection
|
| 209 |
+
language_detection_threshold=0.5 # Default threshold
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# Convert list of tuples to dictionary for consistent return format
|
| 213 |
+
probs = {lang: prob for lang, prob in all_language_probs}
|
| 214 |
+
|
| 215 |
+
return language, language_probability, probs
|
| 216 |
+
|
| 217 |
+
except Exception as e:
|
| 218 |
+
logger.error(f"Error in language detection: {e}")
|
| 219 |
+
raise
|
| 220 |
+
|
| 221 |
|
| 222 |
class MLXWhisper(ASRBase):
|
| 223 |
"""
|
|
|
|
| 296 |
|
| 297 |
def set_translate_task(self):
|
| 298 |
self.transcribe_kargs["task"] = "translate"
|
| 299 |
+
|
| 300 |
+
def detect_language(self, audio):
|
| 301 |
+
raise NotImplementedError("MLX Whisper does not support language detection.")
|
| 302 |
|
| 303 |
|
| 304 |
class OpenaiApiASR(ASRBase):
|
|
|
|
| 366 |
self.use_vad_opt = True
|
| 367 |
|
| 368 |
def set_translate_task(self):
|
| 369 |
+
self.task = "translate"
|
| 370 |
+
|
| 371 |
+
def detect_language(self, audio):
|
| 372 |
+
raise NotImplementedError("MLX Whisper does not support language detection.")
|