Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,62 +1,59 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
import cv2
|
| 4 |
-
import os
|
| 5 |
import numpy as np
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
def preprocess_video(video_path):
|
| 15 |
cap = cv2.VideoCapture(video_path)
|
| 16 |
frames = []
|
| 17 |
-
frame_skip = 5 # Skip every 5 frames to speed up processing
|
| 18 |
|
| 19 |
-
count = 0
|
| 20 |
while cap.isOpened():
|
| 21 |
ret, frame = cap.read()
|
| 22 |
if not ret:
|
| 23 |
break
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
count += 1
|
| 28 |
-
|
| 29 |
cap.release()
|
| 30 |
-
return frames
|
| 31 |
-
|
| 32 |
-
# Function to predict sign language words
|
| 33 |
-
def predict(video_path):
|
| 34 |
-
frames = preprocess_video(video_path)
|
| 35 |
|
| 36 |
if len(frames) == 0:
|
| 37 |
-
return "No frames
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
|
|
|
|
| 41 |
with torch.no_grad():
|
| 42 |
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
predicted_class_idx = logits.argmax(-1).item()
|
| 46 |
-
|
| 47 |
-
# Mapping to common words (example, update with real labels)
|
| 48 |
-
labels = ["Hello", "Thanks", "Yes", "No", "Goodbye", "Please", "Sorry"]
|
| 49 |
-
predicted_label = labels[predicted_class_idx % len(labels)] # Placeholder mapping
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
fn=predict,
|
| 55 |
-
inputs=gr.Video(),
|
| 56 |
-
outputs=gr.Textbox(label="Predicted Sign"),
|
| 57 |
-
title="Sign Language to Text Converter",
|
| 58 |
-
description="Upload a video of a hand gesture and get the predicted word."
|
| 59 |
-
)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import VideoMAEForVideoClassification, VideoMAEFeatureExtractor
|
| 4 |
import cv2
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
+
import tempfile
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Load the pre-trained model
|
| 10 |
+
model_name = "Sokaina55/xclip-base-patch32-finetuned-ssl-sign-language-recognition"
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
|
| 13 |
+
feature_extractor = VideoMAEFeatureExtractor.from_pretrained(model_name)
|
| 14 |
+
model = VideoMAEForVideoClassification.from_pretrained(model_name).to(device)
|
| 15 |
|
| 16 |
+
def process_video(video_path):
|
| 17 |
+
"""Processes video and predicts sign language word."""
|
| 18 |
+
if not os.path.exists(video_path):
|
| 19 |
+
return "Error: Video file not found"
|
| 20 |
|
| 21 |
+
# Read video
|
|
|
|
| 22 |
cap = cv2.VideoCapture(video_path)
|
| 23 |
frames = []
|
|
|
|
| 24 |
|
|
|
|
| 25 |
while cap.isOpened():
|
| 26 |
ret, frame = cap.read()
|
| 27 |
if not ret:
|
| 28 |
break
|
| 29 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 30 |
+
frames.append(frame)
|
| 31 |
+
|
|
|
|
|
|
|
| 32 |
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
if len(frames) == 0:
|
| 35 |
+
return "Error: No frames extracted from the video"
|
| 36 |
|
| 37 |
+
# Preprocess frames
|
| 38 |
+
inputs = feature_extractor(frames, return_tensors="pt")
|
| 39 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 40 |
|
| 41 |
+
# Get predictions
|
| 42 |
with torch.no_grad():
|
| 43 |
outputs = model(**inputs)
|
| 44 |
+
|
| 45 |
+
predicted_class = outputs.logits.argmax(-1).item()
|
| 46 |
+
class_labels = model.config.id2label # Map predictions to words
|
| 47 |
|
| 48 |
+
return f"Predicted word: {class_labels.get(predicted_class, 'Unknown')}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# Gradio UI
|
| 51 |
+
with gr.Blocks() as demo:
|
| 52 |
+
gr.Markdown("## Sign Language to Text Recognition")
|
| 53 |
+
video_input = gr.Video(label="Upload a sign language video")
|
| 54 |
+
output_text = gr.Textbox(label="Predicted Word")
|
| 55 |
+
btn = gr.Button("Predict")
|
| 56 |
|
| 57 |
+
btn.click(fn=process_video, inputs=video_input, outputs=output_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
demo.launch()
|
|
|