File size: 10,485 Bytes
d08081f
f65990c
d08081f
 
f65990c
 
 
 
d08081f
f65990c
 
d08081f
 
 
 
 
 
 
f65990c
 
 
d08081f
 
 
 
 
 
 
 
 
 
 
 
f65990c
d08081f
 
 
 
 
 
 
 
 
 
 
 
 
 
f65990c
d08081f
 
 
 
 
 
f65990c
d08081f
 
 
f65990c
d08081f
 
f65990c
d08081f
 
 
 
 
 
f65990c
d08081f
f65990c
 
d08081f
 
 
f65990c
d08081f
 
f65990c
d08081f
 
 
f65990c
 
 
 
 
d08081f
f65990c
d08081f
 
f65990c
 
 
 
 
 
 
 
d08081f
 
 
b46da1b
 
d08081f
 
 
b46da1b
 
 
 
d08081f
f65990c
b46da1b
d08081f
f65990c
d08081f
f65990c
d08081f
 
 
f65990c
d08081f
 
f65990c
d08081f
b46da1b
f65990c
b46da1b
d08081f
f65990c
d08081f
 
f65990c
d08081f
b46da1b
d08081f
 
 
 
 
 
 
 
 
 
f65990c
d08081f
 
f65990c
d08081f
 
 
 
 
 
 
 
 
 
 
 
f65990c
d08081f
f65990c
d08081f
 
f65990c
 
d08081f
 
 
 
f65990c
 
 
d08081f
 
f65990c
d08081f
 
 
f65990c
 
d08081f
f65990c
d08081f
f65990c
d08081f
 
f65990c
 
 
 
 
d08081f
f65990c
d08081f
f65990c
d08081f
f65990c
 
d08081f
 
f65990c
d08081f
 
 
 
 
f65990c
 
 
d08081f
 
 
f65990c
 
 
 
 
b46da1b
f65990c
b46da1b
 
d08081f
 
b46da1b
f65990c
 
 
 
b46da1b
f65990c
b46da1b
 
f65990c
b46da1b
f65990c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08081f
f65990c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b46da1b
f65990c
 
b46da1b
 
 
 
 
f65990c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import io
import json
import re
import tempfile
import asyncio
from typing import Optional
import logging
from contextlib import asynccontextmanager
from fastapi import FastAPI, Request, status, Depends, Header, HTTPException
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel
from dotenv import load_dotenv
from openai import OpenAI
from elevenlabs.client import ElevenLabs
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_postgres.vectorstores import PGVector
from sqlalchemy import create_engine

# --- GRADIO ---
import gradio as gr

# --- SETUP ---
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
logging.getLogger('tensorflow').setLevel(logging.ERROR)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

load_dotenv()
NEON_DATABASE_URL = os.getenv("NEON_DATABASE_URL")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
SHARED_SECRET = os.getenv("SHARED_SECRET")

# --- CONFIG ---
COLLECTION_NAME = "real_estate_embeddings"
EMBEDDING_MODEL = "hkunlp/instructor-large"
ELEVENLABS_VOICE_NAME = "Leo"
PLANNER_MODEL = "gpt-4o-mini"
ANSWERER_MODEL = "gpt-4o"
TABLE_DESCRIPTIONS = """
- "ongoing_projects_source": Details about projects currently under construction.
- "upcoming_projects_source": Information on future planned projects.
- "completed_projects_source": Facts about projects that are already finished.
- "historical_sales_source": Specific sales records, including price, date, and property ID.
- "past_customers_source": Information about previous customers.
- "feedback_source": Customer feedback and ratings for projects.
"""

# --- CLIENTS ---
embeddings = None
vector_store = None
client_openai = OpenAI(api_key=OPENAI_API_KEY)
client_elevenlabs = ElevenLabs(api_key=ELEVENLABS_API_KEY)


# --- LIFESPAN ---
@asynccontextmanager
async def lifespan(app: FastAPI):
    global embeddings, vector_store
    logging.info(f"Loading embedding model: {EMBEDDING_MODEL}")
    embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)

    logging.info(f"Connecting to vector store: {COLLECTION_NAME}")
    engine = create_engine(NEON_DATABASE_URL, pool_pre_ping=True)
    vector_store = PGVector(
        connection=engine,
        collection_name=COLLECTION_NAME,
        embeddings=embeddings,
    )
    logging.info("Vector store ready.")
    yield
    logging.info("Shutting down.")


app = FastAPI(lifespan=lifespan)


# --- PROMPTS ---
QUERY_FORMULATION_PROMPT = f"""
You are a query analysis agent. Transform the user's query into a precise search query and determine the correct table to filter by.
**Available Tables:**
{TABLE_DESCRIPTIONS}
**User's Query:** "{{user_query}}"
**Task:**
1. Rephrase into a clear, keyword-focused English search query.
2. If status keywords (ongoing, completed, upcoming, etc.) are present, pick the matching table.
3. If no status keyword, set filter_table to null.
4. Return JSON: {{"search_query": "...", "filter_table": "table_name or null"}}
"""

ANSWER_SYSTEM_PROMPT = """
You are an expert AI assistant for a premier real estate developer.
## CORE KNOWLEDGE
- Cities: Pune, Mumbai, Bengaluru, Delhi, Chennai, Hyderabad, Goa, Gurgaon, Kolkata.
- Properties: Luxury apartments, villas, commercial.
- Budget: 45 lakhs to 5 crores.
## RULES
1. Match user language (Hinglish β†’ Hinglish, English β†’ English).
2. Use CONTEXT if available, else use core knowledge.
3. Only answer real estate questions.
"""


# --- FIXED: transcribe_audio accepts path + bytes ---
def transcribe_audio(audio_path: str, audio_bytes: bytes) -> str:
    for attempt in range(3):
        try:
            audio_file = io.BytesIO(audio_bytes)
            filename = os.path.basename(audio_path)  # e.g., "audio.wav"

            logging.info(f"Transcribing audio: {filename} ({len(audio_bytes)} bytes)")

            transcript = client_openai.audio.transcriptions.create(
                model="whisper-1",
                file=(filename, audio_file)  # ← Critical: gives format hint
            )
            text = transcript.text.strip()

            # Hinglish transliteration
            if re.search(r'[\u0900-\u097F]', text):
                response = client_openai.chat.completions.create(
                    model="gpt-4o-mini",
                    messages=[{"role": "user", "content": f"Transliterate to Roman (Hinglish): {text}"}],
                    temperature=0.0
                )
                text = response.choices[0].message.content.strip()

            logging.info(f"Transcribed: {text}")
            return text

        except Exception as e:
            logging.error(f"Transcription error (attempt {attempt+1}): {e}")
            if attempt == 2:
                return ""
    return ""


def generate_elevenlabs_sync(text: str, voice: str) -> bytes:
    for attempt in range(3):
        try:
            return client_elevenlabs.generate(
                text=text,
                voice=voice,
                model="eleven_multilingual_v2",
                output_format="mp3_44100_128"
            )
        except Exception as e:
            logging.error(f"ElevenLabs error (attempt {attempt+1}): {e}")
            if attempt == 2:
                return b''
    return b''


async def formulate_search_plan(user_query: str) -> dict:
    for attempt in range(3):
        try:
            response = await run_in_threadpool(
                client_openai.chat.completions.create,
                model=PLANNER_MODEL,
                messages=[{"role": "user", "content": QUERY_FORMULATION_PROMPT.format(user_query=user_query)}],
                response_format={"type": "json_object"},
                temperature=0.0
            )
            return json.loads(response.choices[0].message.content)
        except Exception as e:
            logging.error(f"Planner error (attempt {attempt+1}): {e}")
            if attempt == 2:
                return {"search_query": user_query, "filter_table": None}
    return {"search_query": user_query, "filter_table": None}


async def get_agent_response(user_text: str) -> str:
    for attempt in range(3):
        try:
            plan = await formulate_search_plan(user_text)
            search_query = plan.get("search_query", user_text)
            filter_table = plan.get("filter_table")
            search_filter = {"source_table": filter_table} if filter_table else {}

            docs = await run_in_threadpool(
                vector_store.similarity_search,
                search_query, k=3, filter=search_filter
            )
            if not docs:
                docs = await run_in_threadpool(vector_store.similarity_search, search_query, k=3)

            context = "\n\n".join([d.page_content for d in docs])

            response = await run_in_threadpool(
                client_openai.chat.completions.create,
                model=ANSWERER_MODEL,
                messages=[
                    {"role": "system", "content": ANSWER_SYSTEM_PROMPT},
                    {"role": "system", "content": f"CONTEXT:\n{context}"},
                    {"role": "user", "content": f"Question: {user_text}"}
                ]
            )
            return response.choices[0].message.content.strip()
        except Exception as e:
            logging.error(f"RAG error (attempt {attempt+1}): {e}")
            if attempt == 2:
                return "Sorry, I couldn't respond. Please try again."
    return "Sorry, I couldn't respond."


# --- AUTH ENDPOINT ---
class TextQuery(BaseModel):
    query: str

async def verify_token(x_auth_token: str = Header(...)):
    if not SHARED_SECRET or x_auth_token != SHARED_SECRET:
        logging.warning("Auth failed for /test-text-query")
        raise HTTPException(status_code=401, detail="Invalid token")
    logging.info("Auth passed")

@app.post("/test-text-query", dependencies=[Depends(verify_token)])
async def test_text_query_endpoint(query: TextQuery):
    logging.info(f"Text query: {query.query}")
    response = await get_agent_response(query.query)
    return {"response": response}


# --- FIXED: process_audio passes path + bytes ---
async def process_audio(audio_path):
    if not audio_path or not os.path.exists(audio_path):
        return None, "No valid audio file received."

    try:
        # Read raw bytes
        with open(audio_path, "rb") as f:
            audio_bytes = f.read()

        if len(audio_bytes) == 0:
            return None, "Empty audio file."

        # 1. Transcribe β€” pass path + bytes
        user_text = await run_in_threadpool(transcribe_audio, audio_path, audio_bytes)
        if not user_text:
            return None, "Couldn't understand audio. Try again."

        logging.info(f"User: {user_text}")

        # 2. AI Response
        agent_response = await get_agent_response(user_text)
        if not agent_response:
            return None, "No response generated."

        logging.info(f"AI: {agent_response[:100]}...")

        # 3. Generate Speech
        ai_audio_bytes = await run_in_threadpool(
            generate_elevenlabs_sync, agent_response, ELEVENLABS_VOICE_NAME
        )
        if not ai_audio_bytes:
            return None, "Failed to generate voice."

        # Save to temp file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            f.write(ai_audio_bytes)
            out_path = f.name

        return out_path, f"**You:** {user_text}\n\n**AI:** {agent_response}"

    except Exception as e:
        logging.error(f"Audio processing error: {e}", exc_info=True)
        return None, f"Error: {str(e)}"


# --- GRADIO UI ---
with gr.Blocks(title="Real Estate AI") as demo:
    gr.Markdown("# Real Estate Voice Assistant")
    gr.Markdown("Ask about projects in Pune, Mumbai, Bengaluru, etc.")

    with gr.Row():
        inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak")
        out_audio = gr.Audio(label="AI Response", type="filepath")
    
    out_text = gr.Textbox(label="Conversation", lines=8)

    # Only trigger on real file (not example text)
    inp.change(process_audio, inp, [out_audio, out_text])

    # --- FIXED: Examples now use real audio files (optional) ---
    # Remove text examples to avoid FileNotFoundError
    # Or: Record real .wav files and upload to repo
    # For now: disable examples
    # gr.Examples(examples=[], inputs=inp)


# --- MOUNT GRADIO ---
app = gr.mount_gradio_app(app, demo, path="/")