File size: 14,008 Bytes
d08081f
f65990c
d08081f
 
f65990c
 
 
 
d08081f
f65990c
 
d08081f
 
 
 
 
 
 
f65990c
 
 
d08081f
 
 
 
 
 
 
 
 
 
 
 
f65990c
d08081f
 
 
 
 
 
 
 
 
 
 
 
 
 
f65990c
d08081f
 
 
e141e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08081f
 
f65990c
d08081f
 
 
f65990c
d08081f
 
f65990c
d08081f
 
 
 
 
 
f65990c
d08081f
f65990c
 
e141e7c
 
 
 
 
 
 
d08081f
 
 
f65990c
d08081f
f6f656f
f65990c
d08081f
f6f656f
 
f65990c
 
 
 
 
2f2f8a0
f65990c
d08081f
 
e141e7c
 
 
 
 
 
 
 
d08081f
 
 
e85255d
b46da1b
d08081f
 
 
b46da1b
 
 
 
d08081f
f65990c
b46da1b
d08081f
f65990c
d08081f
f65990c
d08081f
 
 
f65990c
d08081f
 
f65990c
d08081f
b46da1b
f65990c
b46da1b
d08081f
e85255d
d08081f
 
f65990c
d08081f
e141e7c
d08081f
e141e7c
 
 
 
 
 
d08081f
 
e141e7c
 
 
d08081f
 
 
 
 
e141e7c
 
 
 
 
 
 
 
 
 
 
 
d08081f
e141e7c
d08081f
 
f65990c
e141e7c
d08081f
 
2f2f8a0
d08081f
 
e141e7c
2f2f8a0
 
 
 
 
d08081f
 
 
2f2f8a0
d08081f
 
 
e85255d
 
 
 
 
 
 
 
d08081f
e85255d
 
d08081f
e85255d
d08081f
e85255d
 
f65990c
d08081f
 
 
 
f65990c
 
 
d08081f
 
f65990c
d08081f
 
 
f65990c
 
d08081f
f65990c
d08081f
f65990c
d08081f
 
f65990c
 
 
 
 
d08081f
f65990c
d08081f
e85255d
d08081f
f65990c
 
d08081f
 
f65990c
d08081f
 
 
 
 
f65990c
 
 
d08081f
 
 
f65990c
 
 
 
 
e85255d
f65990c
b46da1b
 
d08081f
 
b46da1b
f65990c
 
 
 
b46da1b
f65990c
b46da1b
 
f65990c
b46da1b
f65990c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e141e7c
 
 
 
f65990c
 
 
 
 
e141e7c
 
f65990c
 
 
d08081f
e85255d
f65990c
 
 
 
 
 
 
 
 
 
 
e141e7c
f65990c
 
 
 
e85255d
b46da1b
f65990c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import io
import json
import re
import tempfile
import asyncio
from typing import Optional
import logging
from contextlib import asynccontextmanager
from fastapi import FastAPI, Request, status, Depends, Header, HTTPException
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel
from dotenv import load_dotenv
from openai import OpenAI
from elevenlabs.client import ElevenLabs
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_postgres.vectorstores import PGVector
from sqlalchemy import create_engine

# --- GRADIO ---
import gradio as gr

# --- SETUP ---
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
logging.getLogger('tensorflow').setLevel(logging.ERROR)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

load_dotenv()
NEON_DATABASE_URL = os.getenv("NEON_DATABASE_URL")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
SHARED_SECRET = os.getenv("SHARED_SECRET")

# --- CONFIG ---
COLLECTION_NAME = "real_estate_embeddings"
EMBEDDING_MODEL = "hkunlp/instructor-large"
ELEVENLABS_VOICE_NAME = "Leo"
PLANNER_MODEL = "gpt-4o-mini"
ANSWERER_MODEL = "gpt-4o"
TABLE_DESCRIPTIONS = """
- "ongoing_projects_source": Details about projects currently under construction.
- "upcoming_projects_source": Information on future planned projects.
- "completed_projects_source": Facts about projects that are already finished.
- "historical_sales_source": Specific sales records, including price, date, and property ID.
- "past_customers_source": Information about previous customers.
- "feedback_source": Customer feedback and ratings for projects.
"""

# --- CLIENTS ---
embeddings = None
vector_store = None
client_openai = OpenAI(api_key=OPENAI_API_KEY)
client_elevenlabs = None # Initialize as None first

# --- ADDED: DETAILED ELEVENLABS INITIALIZATION LOGGING ---
try:
    # Log the key (partially) to verify it's being read
    key_preview = ELEVENLABS_API_KEY[:5] + "..." + ELEVENLABS_API_KEY[-4:] if ELEVENLABS_API_KEY and len(ELEVENLABS_API_KEY) > 9 else "None or too short"
    logging.info(f"Attempting to initialize ElevenLabs client with key: {key_preview}")

    # Ensure key is not None or empty before initializing
    if not ELEVENLABS_API_KEY:
        raise ValueError("ELEVENLABS_API_KEY environment variable not set or empty.")

    client_elevenlabs = ElevenLabs(api_key=ELEVENLABS_API_KEY)
    logging.info(f"Initialized ElevenLabs client object. Type: {type(client_elevenlabs)}")

    # Try accessing a simple attribute or method to confirm initialization
    # Note: This might make a network call during startup
    voices = client_elevenlabs.voices.get_all()
    logging.info(f"Successfully fetched {len(voices.voices)} voices from ElevenLabs.")

except Exception as e:
    logging.error(f"Failed to initialize ElevenLabs client or fetch voices: {e}", exc_info=True)
    client_elevenlabs = None # Ensure it's None if init failed
# --- END ADDED LOGGING ---


# --- LIFESPAN ---
@asynccontextmanager
async def lifespan(app: FastAPI):
    global embeddings, vector_store
    logging.info(f"Loading embedding model: {EMBEDDING_MODEL}")
    embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)

    logging.info(f"Connecting to vector store: {COLLECTION_NAME}")
    engine = create_engine(NEON_DATABASE_URL, pool_pre_ping=True)
    vector_store = PGVector(
        connection=engine,
        collection_name=COLLECTION_NAME,
        embeddings=embeddings,
    )
    logging.info("Vector store ready.")
    yield
    logging.info("Shutting down.")

# --- ADDED: LIBRARY VERSION LOGGING ---
try:
    import elevenlabs
    logging.info(f"Found elevenlabs library version: {elevenlabs.__version__}")
except ImportError:
    logging.error("Could not import elevenlabs library!")
# --- END ADDED LOGGING ---

app = FastAPI(lifespan=lifespan)


# --- PROMPTS ---
QUERY_FORMULATION_PROMPT = """
You are a query analysis agent. Transform the user's query into a precise search query and determine the correct table to filter by.
**Available Tables:**
{table_descriptions}
**User's Query:** "{user_query}"
**Task:**
1. Rephrase into a clear, keyword-focused English search query.
2. If status keywords (ongoing, completed, upcoming, etc.) are present, pick the matching table.
3. If no status keyword, set filter_table to null.
4. Return JSON: {{"search_query": "...", "filter_table": "table_name or null"}}
"""

ANSWER_SYSTEM_PROMPT = """
You are an expert AI assistant for a premier real estate developer.
## CORE KNOWLEDGE
- Cities: Pune, Mumbai, Bengaluru, Delhi, Chennai, Hyderabad, Goa, Gurgaon, Kolkata.
- Properties: Luxury apartments, villas, commercial.
- Budget: 45 lakhs to 5 crores.
## RULES
1. Match user language (Hinglish β†’ Hinglish, English β†’ English).
2. Use CONTEXT if available, else use core knowledge.
3. Only answer real estate questions.
"""


# --- AUDIO & LLM HELPERS ---
def transcribe_audio(audio_path: str, audio_bytes: bytes) -> str:
    for attempt in range(3):
        try:
            audio_file = io.BytesIO(audio_bytes)
            filename = os.path.basename(audio_path)  # e.g., "audio.wav"

            logging.info(f"Transcribing audio: {filename} ({len(audio_bytes)} bytes)")

            transcript = client_openai.audio.transcriptions.create(
                model="whisper-1",
                file=(filename, audio_file)  # ← Critical: gives format hint
            )
            text = transcript.text.strip()

            # Hinglish transliteration
            if re.search(r'[\u0900-\u097F]', text):
                response = client_openai.chat.completions.create(
                    model="gpt-4o-mini",
                    messages=[{"role": "user", "content": f"Transliterate to Roman (Hinglish): {text}"}],
                    temperature=0.0
                )
                text = response.choices[0].message.content.strip()

            logging.info(f"Transcribed: {text}")
            return text

        except Exception as e:
            logging.error(f"Transcription error (attempt {attempt+1}): {e}", exc_info=True) # Added exc_info
            if attempt == 2:
                return ""
    return ""

# --- UPDATED generate_elevenlabs_sync with check ---
def generate_elevenlabs_sync(text: str, voice: str) -> bytes:
    # --- ADDED THIS CHECK ---
    if client_elevenlabs is None:
        logging.error("ElevenLabs client is not initialized. Cannot generate audio.")
        return b''
    # --- END ADDED CHECK ---

    for attempt in range(3):
        try:
            # This call might still fail if init succeeded but key is bad at runtime
            logging.info(f"Calling ElevenLabs generate for voice '{voice}'...")
            audio_data = client_elevenlabs.generate(
                text=text,
                voice=voice,
                model="eleven_multilingual_v2",
                output_format="mp3_44100_128"
            )
            # Check if generate returns bytes directly or needs iteration (depends on exact version/method)
            if isinstance(audio_data, bytes):
                 logging.info(f"ElevenLabs generate returned {len(audio_data)} bytes.")
                 return audio_data
            else:
                 # Handle streaming iterator if necessary
                 chunks = b""
                 for chunk in audio_data:
                     chunks += chunk
                 logging.info(f"ElevenLabs generate streamed {len(chunks)} bytes.")
                 return chunks

        except Exception as e:
            logging.error(f"ElevenLabs error during generate (attempt {attempt+1}): {e}", exc_info=True) # Added exc_info
            if attempt == 2:
                return b''
    return b''
# --- END UPDATED FUNCTION ---

async def formulate_search_plan(user_query: str) -> dict:
    logging.info(f"Formulating search plan for query: {user_query}")
    for attempt in range(3):
        try:
            # Format the prompt here with BOTH variables
            formatted_prompt = QUERY_FORMULATION_PROMPT.format(
                table_descriptions=TABLE_DESCRIPTIONS,
                user_query=user_query
            )

            response = await run_in_threadpool(
                client_openai.chat.completions.create,
                model=PLANNER_MODEL,
                messages=[{"role": "user", "content": formatted_prompt}], # Use the fully formatted prompt
                response_format={"type": "json_object"},
                temperature=0.0
            )
            # Log the raw response BEFORE trying to parse
            raw_response_content = response.choices[0].message.content
            logging.info(f"Raw Planner LLM response content: {raw_response_content}")

            # Try parsing
            plan = json.loads(raw_response_content)
            logging.info(f"Successfully parsed search plan: {plan}")
            return plan
        except Exception as e:
            # Log the specific error during parsing or API call, with traceback
            logging.error(f"Planner error (attempt {attempt+1}): {e}", exc_info=True)
            if attempt == 2:
                logging.warning("Planner failed after 3 attempts. Using fallback.")
                return {"search_query": user_query, "filter_table": None}
    # Fallback if loop finishes unexpectedly
    logging.error("Planner loop finished unexpectedly. Using fallback.")
    return {"search_query": user_query, "filter_table": None}

async def get_agent_response(user_text: str) -> str:
    for attempt in range(3):
        try:
            plan = await formulate_search_plan(user_text)
            search_query = plan.get("search_query", user_text)
            filter_table = plan.get("filter_table")
            search_filter = {"source_table": filter_table} if filter_table else {}

            docs = await run_in_threadpool(
                vector_store.similarity_search,
                search_query, k=3, filter=search_filter
            )
            if not docs:
                docs = await run_in_threadpool(vector_store.similarity_search, search_query, k=3)

            context = "\n\n".join([d.page_content for d in docs])

            response = await run_in_threadpool(
                client_openai.chat.completions.create,
                model=ANSWERER_MODEL,
                messages=[
                    {"role": "system", "content": ANSWER_SYSTEM_PROMPT},
                    {"role": "system", "content": f"CONTEXT:\n{context}"},
                    {"role": "user", "content": f"Question: {user_text}"}
                ]
            )
            return response.choices[0].message.content.strip()
        except Exception as e:
            logging.error(f"RAG error (attempt {attempt+1}): {e}", exc_info=True) # Added exc_info
            if attempt == 2:
                return "Sorry, I couldn't respond. Please try again."
    return "Sorry, I couldn't respond."


# --- AUTH ENDPOINT ---
class TextQuery(BaseModel):
    query: str

async def verify_token(x_auth_token: str = Header(...)):
    if not SHARED_SECRET or x_auth_token != SHARED_SECRET:
        logging.warning("Auth failed for /test-text-query")
        raise HTTPException(status_code=401, detail="Invalid token")
    logging.info("Auth passed")

@app.post("/test-text-query", dependencies=[Depends(verify_token)])
async def test_text_query_endpoint(query: TextQuery):
    logging.info(f"Text query: {query.query}")
    response = await get_agent_response(query.query)
    return {"response": response}


# --- GRADIO AUDIO PROCESSING ---
async def process_audio(audio_path):
    if not audio_path or not os.path.exists(audio_path):
        return None, "No valid audio file received."

    try:
        # Read raw bytes
        with open(audio_path, "rb") as f:
            audio_bytes = f.read()

        if len(audio_bytes) == 0:
            return None, "Empty audio file."

        # 1. Transcribe β€” pass path + bytes
        user_text = await run_in_threadpool(transcribe_audio, audio_path, audio_bytes)
        if not user_text:
            return None, "Couldn't understand audio. Try again."

        logging.info(f"User: {user_text}")

        # 2. AI Response
        agent_response = await get_agent_response(user_text)
        if not agent_response:
            return None, "No response generated."

        logging.info(f"AI: {agent_response[:100]}...")

        # 3. Generate Speech
        ai_audio_bytes = await run_in_threadpool(
            generate_elevenlabs_sync, agent_response, ELEVENLABS_VOICE_NAME
        )
        if not ai_audio_bytes:
            # Return the text response even if TTS fails
            logging.error("Failed to generate voice. Returning text only.")
            return None, f"**You:** {user_text}\n\n**AI:** {agent_response}\n\n_(Audio generation failed)_"


        # Save to temp file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            f.write(ai_audio_bytes)
            out_path = f.name
            logging.info(f"Saved generated audio to temp file: {out_path}")


        return out_path, f"**You:** {user_text}\n\n**AI:** {agent_response}"

    except Exception as e:
        logging.error(f"Audio processing error: {e}", exc_info=True) # Added exc_info
        return None, f"Error: {str(e)}"


# --- GRADIO UI ---
with gr.Blocks(title="Real Estate AI") as demo:
    gr.Markdown("# Real Estate Voice Assistant")
    gr.Markdown("Ask about projects in Pune, Mumbai, Bengaluru, etc.")

    with gr.Row():
        inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak")
        out_audio = gr.Audio(label="AI Response", type="filepath")

    out_text = gr.Textbox(label="Conversation", lines=8)

    inp.change(process_audio, inp, [out_audio, out_text])

    # Removed examples to avoid FileNotFoundError with text inputs
    # gr.Examples(examples=[], inputs=inp)


# --- MOUNT GRADIO ---
app = gr.mount_gradio_app(app, demo, path="/")