Spaces:
Sleeping
Sleeping
| import os | |
| import io | |
| import json | |
| import re | |
| import tempfile | |
| import logging | |
| from contextlib import asynccontextmanager | |
| from fastapi import FastAPI, Request, status, Depends, Header, HTTPException | |
| from fastapi.concurrency import run_in_threadpool | |
| from pydantic import BaseModel | |
| from dotenv import load_dotenv | |
| from openai import OpenAI | |
| from elevenlabs.client import ElevenLabs | |
| from langchain_huggingface import HuggingFaceEmbeddings | |
| from langchain_postgres.vectorstores import PGVector | |
| from sqlalchemy import create_engine | |
| # --- GRADIO --- | |
| import gradio as gr | |
| # --------------------------------------------------------------------------- # | |
| # CONFIGURATION | |
| # --------------------------------------------------------------------------- # | |
| os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" | |
| logging.getLogger("tensorflow").setLevel(logging.ERROR) | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format="%(asctime)s - %(levelname)s - %(message)s", | |
| ) | |
| load_dotenv() | |
| NEON_DATABASE_URL = os.getenv("NEON_DATABASE_URL") | |
| OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
| ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY") | |
| SHARED_SECRET = os.getenv("SHARED_SECRET") | |
| COLLECTION_NAME = "real_estate_embeddings" | |
| EMBEDDING_MODEL = "hkunlp/instructor-large" | |
| # *** HARD-CODED VOICE ID (as requested) *** | |
| ELEVENLABS_VOICE_ID = "LHJy3mhZWsvhUjy0zUM1" # <-- your voice | |
| PLANNER_MODEL = "gpt-4o-mini" | |
| ANSWERER_MODEL = "gpt-4o" | |
| TABLE_DESCRIPTIONS = """ | |
| - "ongoing_projects_source": Details about projects currently under construction. | |
| - "upcoming_projects_source": Information on future planned projects. | |
| - "completed_projects_source": Facts about projects that are already finished. | |
| - "historical_sales_source": Specific sales records, including price, date, and property ID. | |
| - "past_customers_source": Information about previous customers. | |
| - "feedback_source": Customer feedback and ratings for projects. | |
| """ | |
| # --------------------------------------------------------------------------- # | |
| # CLIENTS | |
| # --------------------------------------------------------------------------- # | |
| embeddings = None | |
| vector_store = None | |
| client_openai = OpenAI(api_key=OPENAI_API_KEY) | |
| client_elevenlabs = None | |
| # ---- ElevenLabs init with detailed logging --------------------------------- | |
| try: | |
| key_preview = ( | |
| f"{ELEVENLABS_API_KEY[:5]}...{ELEVENLABS_API_KEY[-4:]}" | |
| if ELEVENLABS_API_KEY and len(ELEVENLABS_API_KEY) > 9 | |
| else "None" | |
| ) | |
| logging.info(f"Initializing ElevenLabs client with key: {key_preview}") | |
| if not ELEVENLABS_API_KEY: | |
| raise ValueError("ELEVENLABS_API_KEY is missing or empty.") | |
| client_elevenlabs = ElevenLabs(api_key=ELEVENLABS_API_KEY) | |
| logging.info(f"ElevenLabs client created β type: {type(client_elevenlabs)}") | |
| # Verify we can list voices (optional, but proves the key works) | |
| voices = client_elevenlabs.voices.get_all() | |
| logging.info(f"Fetched {len(voices.voices)} voices from ElevenLabs.") | |
| except Exception as e: | |
| logging.error(f"ElevenLabs init failed: {e}", exc_info=True) | |
| client_elevenlabs = None | |
| # ---- Log SDK version ------------------------------------------------------- | |
| try: | |
| import elevenlabs | |
| logging.info(f"elevenlabs SDK version: {elevenlabs.__version__}") | |
| except Exception: | |
| logging.error("Could not import elevenlabs package.") | |
| # --------------------------------------------------------------------------- # | |
| # FASTAPI APP | |
| # --------------------------------------------------------------------------- # | |
| async def lifespan(app: FastAPI): | |
| global embeddings, vector_store | |
| logging.info(f"Loading embedding model: {EMBEDDING_MODEL}") | |
| embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL) | |
| logging.info(f"Connecting to vector store: {COLLECTION_NAME}") | |
| engine = create_engine(NEON_DATABASE_URL, pool_pre_ping=True) | |
| vector_store = PGVector( | |
| connection=engine, | |
| collection_name=COLLECTION_NAME, | |
| embeddings=embeddings, | |
| ) | |
| logging.info("Vector store ready.") | |
| yield | |
| logging.info("Shutting down.") | |
| app = FastAPI(lifespan=lifespan) | |
| # --------------------------------------------------------------------------- # | |
| # PROMPTS | |
| # --------------------------------------------------------------------------- # | |
| QUERY_FORMULATION_PROMPT = """ | |
| You are a query analysis agent. Transform the user's query into a precise search query and determine the correct table to filter by. | |
| **Available Tables:** | |
| {table_descriptions} | |
| **User's Query:** "{user_query}" | |
| **Task:** | |
| 1. Rephrase into a clear, keyword-focused English search query. | |
| 2. If status keywords (ongoing, completed, upcoming, etc.) are present, pick the matching table. | |
| 3. If no status keyword, set filter_table to null. | |
| 4. Return JSON: {{"search_query": "...", "filter_table": "table_name or null"}} | |
| """.strip() | |
| ANSWER_SYSTEM_PROMPT = """ | |
| You are an expert AI assistant for a premier real estate developer. | |
| ## CORE KNOWLEDGE | |
| - Cities: Pune, Mumbai, Bengaluru, Delhi, Chennai, Hyderabad, Goa, Gurgaon, Kolkata. | |
| - Properties: Luxury apartments, villas, commercial. | |
| - Budget: 45 lakhs to 5 crores. | |
| ## RULES | |
| 1. Match user language (Hinglish β Hinglish, English β English). | |
| 2. Use CONTEXT if available, else use core knowledge. | |
| 3. Only answer real estate questions. | |
| """.strip() | |
| # --------------------------------------------------------------------------- # | |
| # AUDIO & LLM HELPERS | |
| # --------------------------------------------------------------------------- # | |
| def transcribe_audio(audio_path: str, audio_bytes: bytes) -> str: | |
| for attempt in range(3): | |
| try: | |
| audio_file = io.BytesIO(audio_bytes) | |
| filename = os.path.basename(audio_path) | |
| logging.info(f"Transcribing {filename} ({len(audio_bytes)} bytes)") | |
| transcript = client_openai.audio.transcriptions.create( | |
| model="whisper-1", | |
| file=(filename, audio_file), | |
| ) | |
| text = transcript.text.strip() | |
| # Hinglish transliteration | |
| if re.search(r"[\u0900-\u097F]", text): | |
| resp = client_openai.chat.completions.create( | |
| model="gpt-4o-mini", | |
| messages=[ | |
| {"role": "user", "content": f"Transliterate to Roman (Hinglish): {text}"} | |
| ], | |
| temperature=0.0, | |
| ) | |
| text = resp.choices[0].message.content.strip() | |
| logging.info(f"Transcribed: {text}") | |
| return text | |
| except Exception as e: | |
| logging.error(f"Transcription error (attempt {attempt + 1}): {e}", exc_info=True) | |
| if attempt == 2: | |
| return "" | |
| return "" | |
| def generate_elevenlabs_sync(text: str) -> bytes: | |
| """ | |
| Uses the hard-coded voice ID and the correct SDK method. | |
| NOTE: `model` parameter is REMOVED in SDK v2.17.0+ | |
| """ | |
| if client_elevenlabs is None: | |
| logging.error("ElevenLabs client not initialized β skipping TTS.") | |
| return b"" | |
| for attempt in range(3): | |
| try: | |
| logging.info("Calling ElevenLabs text_to_speech.convert...") | |
| stream = client_elevenlabs.text_to_speech.convert( | |
| voice_id=ELEVENLABS_VOICE_ID, | |
| text=text, | |
| output_format="mp3_44100_128", | |
| # model="eleven_multilingual_v2" β REMOVED | |
| ) | |
| audio_bytes = b"" | |
| for chunk in stream: | |
| if chunk: | |
| audio_bytes += chunk | |
| logging.info(f"TTS returned {len(audio_bytes)} bytes.") | |
| return audio_bytes | |
| except Exception as e: | |
| logging.error( | |
| f"ElevenLabs TTS error (attempt {attempt + 1}): {e}", exc_info=True | |
| ) | |
| if attempt == 2: | |
| return b"" | |
| return b"" | |
| async def formulate_search_plan(user_query: str) -> dict: | |
| logging.info(f"Formulating search plan for: {user_query}") | |
| for attempt in range(3): | |
| try: | |
| formatted = QUERY_FORMULATION_PROMPT.format( | |
| table_descriptions=TABLE_DESCRIPTIONS, user_query=user_query | |
| ) | |
| resp = await run_in_threadpool( | |
| client_openai.chat.completions.create, | |
| model=PLANNER_MODEL, | |
| messages=[{"role": "user", "content": formatted}], | |
| response_format={"type": "json_object"}, | |
| temperature=0.0, | |
| ) | |
| raw = resp.choices[0].message.content | |
| logging.info(f"Planner raw response: {raw}") | |
| plan = json.loads(raw) | |
| logging.info(f"Parsed plan: {plan}") | |
| return plan | |
| except Exception as e: | |
| logging.error(f"Planner error (attempt {attempt + 1}): {e}", exc_info=True) | |
| if attempt == 2: | |
| return {"search_query": user_query, "filter_table": None} | |
| return {"search_query": user_query, "filter_table": None} | |
| async def get_agent_response(user_text: str) -> str: | |
| for attempt in range(3): | |
| try: | |
| plan = await formulate_search_plan(user_text) | |
| search_q = plan.get("search_query", user_text) | |
| filter_tbl = plan.get("filter_table") | |
| search_filter = {"source_table": filter_tbl} if filter_tbl else {} | |
| docs = await run_in_threadpool( | |
| vector_store.similarity_search, | |
| search_q, | |
| k=3, | |
| filter=search_filter, | |
| ) | |
| if not docs: | |
| docs = await run_in_threadpool(vector_store.similarity_search, search_q, k=3) | |
| context = "\n\n".join(d.page_content for d in docs) | |
| resp = await run_in_threadpool( | |
| client_openai.chat.completions.create, | |
| model=ANSWERER_MODEL, | |
| messages=[ | |
| {"role": "system", "content": ANSWER_SYSTEM_PROMPT}, | |
| {"role": "system", "content": f"CONTEXT:\n{context}"}, | |
| {"role": "user", "content": f"Question: {user_text}"}, | |
| ], | |
| ) | |
| return resp.choices[0].message.content.strip() | |
| except Exception as e: | |
| logging.error(f"RAG error (attempt {attempt + 1}): {e}", exc_info=True) | |
| if attempt == 2: | |
| return "Sorry, I couldn't respond. Please try again." | |
| return "Sorry, I couldn't respond." | |
| # --------------------------------------------------------------------------- # | |
| # AUTH ENDPOINT | |
| # --------------------------------------------------------------------------- # | |
| class TextQuery(BaseModel): | |
| query: str | |
| async def verify_token(x_auth_token: str = Header(...)): | |
| if not SHARED_SECRET or x_auth_token != SHARED_SECRET: | |
| logging.warning("Auth failed for /test-text-query") | |
| raise HTTPException(status_code=401, detail="Invalid token") | |
| logging.info("Auth passed") | |
| async def test_text_query_endpoint(query: TextQuery): | |
| logging.info(f"Text query: {query.query}") | |
| response = await get_agent_response(query.query) | |
| return {"response": response} | |
| # --------------------------------------------------------------------------- # | |
| # GRADIO PIPELINE | |
| # --------------------------------------------------------------------------- # | |
| async def process_audio(audio_path): | |
| if not audio_path or not os.path.exists(audio_path): | |
| return None, "No valid audio file received." | |
| try: | |
| # ---- 1. READ RAW BYTES ------------------------------------------------ | |
| with open(audio_path, "rb") as f: | |
| audio_bytes = f.read() | |
| if not audio_bytes: | |
| return None, "Empty audio file." | |
| # ---- 2. TRANSCRIBE ---------------------------------------------------- | |
| user_text = await run_in_threadpool(transcribe_audio, audio_path, audio_bytes) | |
| if not user_text: | |
| return None, "Couldn't understand audio. Try again." | |
| logging.info(f"User: {user_text}") | |
| # ---- 3. GET AI RESPONSE ----------------------------------------------- | |
| agent_response = await get_agent_response(user_text) | |
| if not agent_response: | |
| return None, "No response generated." | |
| logging.info(f"AI: {agent_response[:100]}...") | |
| logging.info(f"FULL AI Response sent to ElevenLabs: >>>{agent_response}<<<") | |
| # ---- 4. TEXT-TO-SPEECH ------------------------------------------------ | |
| ai_audio_bytes = await run_in_threadpool(generate_elevenlabs_sync, agent_response) | |
| if not ai_audio_bytes: | |
| logging.error("TTS failed β returning text only.") | |
| return ( | |
| None, | |
| f"**You:** {user_text}\n\n**AI:** {agent_response}\n\n_(Audio generation failed)_", | |
| ) | |
| # Save to a temporary file for Gradio | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f: | |
| f.write(ai_audio_bytes) | |
| out_path = f.name | |
| logging.info(f"Saved TTS audio to {out_path}") | |
| return out_path, f"**You:** {user_text}\n\n**AI:** {agent_response}" | |
| except Exception as e: | |
| logging.error(f"Audio processing error: {e}", exc_info=True) | |
| return None, f"Error: {str(e)}" | |
| # --------------------------------------------------------------------------- # | |
| # GRADIO UI | |
| # --------------------------------------------------------------------------- # | |
| with gr.Blocks(title="Real Estate AI") as demo: | |
| gr.Markdown("# Real Estate Voice Assistant") | |
| gr.Markdown("Ask about projects in Pune, Mumbai, Bengaluru, etc.") | |
| with gr.Row(): | |
| inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak") | |
| out_audio = gr.Audio(label="AI Response", type="filepath") | |
| out_text = gr.Textbox(label="Conversation", lines=8) | |
| inp.change(process_audio, inputs=inp, outputs=[out_audio, out_text]) | |
| # No examples β they caused FileNotFound errors when clicking text. | |
| # --------------------------------------------------------------------------- # | |
| # MOUNT GRADIO | |
| # --------------------------------------------------------------------------- # | |
| app = gr.mount_gradio_app(app, demo, path="/") |