Commit
Β·
1a15b05
1
Parent(s):
e141e7c
I wish I could RM/RF my way through this, but well changes were done to the voice conversion code for elevenlabs
Browse files
main.py
CHANGED
|
@@ -3,8 +3,6 @@ import io
|
|
| 3 |
import json
|
| 4 |
import re
|
| 5 |
import tempfile
|
| 6 |
-
import asyncio
|
| 7 |
-
from typing import Optional
|
| 8 |
import logging
|
| 9 |
from contextlib import asynccontextmanager
|
| 10 |
from fastapi import FastAPI, Request, status, Depends, Header, HTTPException
|
|
@@ -20,10 +18,15 @@ from sqlalchemy import create_engine
|
|
| 20 |
# --- GRADIO ---
|
| 21 |
import gradio as gr
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
load_dotenv()
|
| 29 |
NEON_DATABASE_URL = os.getenv("NEON_DATABASE_URL")
|
|
@@ -31,12 +34,15 @@ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
| 31 |
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
|
| 32 |
SHARED_SECRET = os.getenv("SHARED_SECRET")
|
| 33 |
|
| 34 |
-
# --- CONFIG ---
|
| 35 |
COLLECTION_NAME = "real_estate_embeddings"
|
| 36 |
EMBEDDING_MODEL = "hkunlp/instructor-large"
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
PLANNER_MODEL = "gpt-4o-mini"
|
| 39 |
ANSWERER_MODEL = "gpt-4o"
|
|
|
|
| 40 |
TABLE_DESCRIPTIONS = """
|
| 41 |
- "ongoing_projects_source": Details about projects currently under construction.
|
| 42 |
- "upcoming_projects_source": Information on future planned projects.
|
|
@@ -46,37 +52,48 @@ TABLE_DESCRIPTIONS = """
|
|
| 46 |
- "feedback_source": Customer feedback and ratings for projects.
|
| 47 |
"""
|
| 48 |
|
| 49 |
-
#
|
|
|
|
|
|
|
| 50 |
embeddings = None
|
| 51 |
vector_store = None
|
| 52 |
client_openai = OpenAI(api_key=OPENAI_API_KEY)
|
| 53 |
-
client_elevenlabs = None
|
| 54 |
|
| 55 |
-
#
|
| 56 |
try:
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
# Ensure key is not None or empty before initializing
|
| 62 |
if not ELEVENLABS_API_KEY:
|
| 63 |
-
raise ValueError("ELEVENLABS_API_KEY
|
| 64 |
|
| 65 |
client_elevenlabs = ElevenLabs(api_key=ELEVENLABS_API_KEY)
|
| 66 |
-
logging.info(f"
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
# Note: This might make a network call during startup
|
| 70 |
voices = client_elevenlabs.voices.get_all()
|
| 71 |
-
logging.info(f"
|
| 72 |
|
| 73 |
except Exception as e:
|
| 74 |
-
logging.error(f"
|
| 75 |
-
client_elevenlabs = None
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
| 77 |
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
#
|
|
|
|
|
|
|
| 80 |
@asynccontextmanager
|
| 81 |
async def lifespan(app: FastAPI):
|
| 82 |
global embeddings, vector_store
|
|
@@ -94,18 +111,12 @@ async def lifespan(app: FastAPI):
|
|
| 94 |
yield
|
| 95 |
logging.info("Shutting down.")
|
| 96 |
|
| 97 |
-
# --- ADDED: LIBRARY VERSION LOGGING ---
|
| 98 |
-
try:
|
| 99 |
-
import elevenlabs
|
| 100 |
-
logging.info(f"Found elevenlabs library version: {elevenlabs.__version__}")
|
| 101 |
-
except ImportError:
|
| 102 |
-
logging.error("Could not import elevenlabs library!")
|
| 103 |
-
# --- END ADDED LOGGING ---
|
| 104 |
|
| 105 |
app = FastAPI(lifespan=lifespan)
|
| 106 |
|
| 107 |
-
|
| 108 |
-
#
|
|
|
|
| 109 |
QUERY_FORMULATION_PROMPT = """
|
| 110 |
You are a query analysis agent. Transform the user's query into a precise search query and determine the correct table to filter by.
|
| 111 |
**Available Tables:**
|
|
@@ -116,7 +127,7 @@ You are a query analysis agent. Transform the user's query into a precise search
|
|
| 116 |
2. If status keywords (ongoing, completed, upcoming, etc.) are present, pick the matching table.
|
| 117 |
3. If no status keyword, set filter_table to null.
|
| 118 |
4. Return JSON: {{"search_query": "...", "filter_table": "table_name or null"}}
|
| 119 |
-
"""
|
| 120 |
|
| 121 |
ANSWER_SYSTEM_PROMPT = """
|
| 122 |
You are an expert AI assistant for a premier real estate developer.
|
|
@@ -128,158 +139,154 @@ You are an expert AI assistant for a premier real estate developer.
|
|
| 128 |
1. Match user language (Hinglish β Hinglish, English β English).
|
| 129 |
2. Use CONTEXT if available, else use core knowledge.
|
| 130 |
3. Only answer real estate questions.
|
| 131 |
-
"""
|
| 132 |
-
|
| 133 |
|
| 134 |
-
#
|
|
|
|
|
|
|
| 135 |
def transcribe_audio(audio_path: str, audio_bytes: bytes) -> str:
|
| 136 |
for attempt in range(3):
|
| 137 |
try:
|
| 138 |
audio_file = io.BytesIO(audio_bytes)
|
| 139 |
-
filename = os.path.basename(audio_path)
|
| 140 |
-
|
| 141 |
-
logging.info(f"Transcribing audio: {filename} ({len(audio_bytes)} bytes)")
|
| 142 |
|
|
|
|
| 143 |
transcript = client_openai.audio.transcriptions.create(
|
| 144 |
model="whisper-1",
|
| 145 |
-
file=(filename, audio_file)
|
| 146 |
)
|
| 147 |
text = transcript.text.strip()
|
| 148 |
|
| 149 |
# Hinglish transliteration
|
| 150 |
-
if re.search(r
|
| 151 |
-
|
| 152 |
model="gpt-4o-mini",
|
| 153 |
-
messages=[
|
| 154 |
-
|
|
|
|
|
|
|
| 155 |
)
|
| 156 |
-
text =
|
| 157 |
|
| 158 |
logging.info(f"Transcribed: {text}")
|
| 159 |
return text
|
| 160 |
-
|
| 161 |
except Exception as e:
|
| 162 |
-
logging.error(f"Transcription error (attempt {attempt+1}): {e}", exc_info=True)
|
| 163 |
if attempt == 2:
|
| 164 |
return ""
|
| 165 |
return ""
|
| 166 |
|
| 167 |
-
|
| 168 |
-
def generate_elevenlabs_sync(text: str
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
| 170 |
if client_elevenlabs is None:
|
| 171 |
-
logging.error("ElevenLabs client
|
| 172 |
-
return b
|
| 173 |
-
# --- END ADDED CHECK ---
|
| 174 |
|
| 175 |
for attempt in range(3):
|
| 176 |
try:
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
text=text,
|
| 181 |
-
voice=voice,
|
| 182 |
model="eleven_multilingual_v2",
|
| 183 |
-
output_format="mp3_44100_128"
|
| 184 |
)
|
| 185 |
-
#
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
for chunk in audio_data:
|
| 193 |
-
chunks += chunk
|
| 194 |
-
logging.info(f"ElevenLabs generate streamed {len(chunks)} bytes.")
|
| 195 |
-
return chunks
|
| 196 |
-
|
| 197 |
except Exception as e:
|
| 198 |
-
logging.error(
|
|
|
|
|
|
|
| 199 |
if attempt == 2:
|
| 200 |
-
return b
|
| 201 |
-
return b
|
| 202 |
-
|
| 203 |
|
| 204 |
async def formulate_search_plan(user_query: str) -> dict:
|
| 205 |
-
logging.info(f"Formulating search plan for
|
| 206 |
for attempt in range(3):
|
| 207 |
try:
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
table_descriptions=TABLE_DESCRIPTIONS,
|
| 211 |
-
user_query=user_query
|
| 212 |
)
|
| 213 |
-
|
| 214 |
-
response = await run_in_threadpool(
|
| 215 |
client_openai.chat.completions.create,
|
| 216 |
model=PLANNER_MODEL,
|
| 217 |
-
messages=[{"role": "user", "content":
|
| 218 |
response_format={"type": "json_object"},
|
| 219 |
-
temperature=0.0
|
| 220 |
)
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
# Try parsing
|
| 226 |
-
plan = json.loads(raw_response_content)
|
| 227 |
-
logging.info(f"Successfully parsed search plan: {plan}")
|
| 228 |
return plan
|
| 229 |
except Exception as e:
|
| 230 |
-
|
| 231 |
-
logging.error(f"Planner error (attempt {attempt+1}): {e}", exc_info=True)
|
| 232 |
if attempt == 2:
|
| 233 |
-
logging.warning("Planner failed after 3 attempts. Using fallback.")
|
| 234 |
return {"search_query": user_query, "filter_table": None}
|
| 235 |
-
# Fallback if loop finishes unexpectedly
|
| 236 |
-
logging.error("Planner loop finished unexpectedly. Using fallback.")
|
| 237 |
return {"search_query": user_query, "filter_table": None}
|
| 238 |
|
|
|
|
| 239 |
async def get_agent_response(user_text: str) -> str:
|
| 240 |
for attempt in range(3):
|
| 241 |
try:
|
| 242 |
plan = await formulate_search_plan(user_text)
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
search_filter = {"source_table":
|
| 246 |
|
| 247 |
docs = await run_in_threadpool(
|
| 248 |
vector_store.similarity_search,
|
| 249 |
-
|
|
|
|
|
|
|
| 250 |
)
|
| 251 |
if not docs:
|
| 252 |
-
docs = await run_in_threadpool(vector_store.similarity_search,
|
| 253 |
|
| 254 |
-
context = "\n\n".join(
|
| 255 |
|
| 256 |
-
|
| 257 |
client_openai.chat.completions.create,
|
| 258 |
model=ANSWERER_MODEL,
|
| 259 |
messages=[
|
| 260 |
{"role": "system", "content": ANSWER_SYSTEM_PROMPT},
|
| 261 |
{"role": "system", "content": f"CONTEXT:\n{context}"},
|
| 262 |
-
{"role": "user", "content": f"Question: {user_text}"}
|
| 263 |
-
]
|
| 264 |
)
|
| 265 |
-
return
|
| 266 |
except Exception as e:
|
| 267 |
-
logging.error(f"RAG error (attempt {attempt+1}): {e}", exc_info=True)
|
| 268 |
if attempt == 2:
|
| 269 |
return "Sorry, I couldn't respond. Please try again."
|
| 270 |
return "Sorry, I couldn't respond."
|
| 271 |
|
| 272 |
|
| 273 |
-
#
|
|
|
|
|
|
|
| 274 |
class TextQuery(BaseModel):
|
| 275 |
query: str
|
| 276 |
|
|
|
|
| 277 |
async def verify_token(x_auth_token: str = Header(...)):
|
| 278 |
if not SHARED_SECRET or x_auth_token != SHARED_SECRET:
|
| 279 |
logging.warning("Auth failed for /test-text-query")
|
| 280 |
raise HTTPException(status_code=401, detail="Invalid token")
|
| 281 |
logging.info("Auth passed")
|
| 282 |
|
|
|
|
| 283 |
@app.post("/test-text-query", dependencies=[Depends(verify_token)])
|
| 284 |
async def test_text_query_endpoint(query: TextQuery):
|
| 285 |
logging.info(f"Text query: {query.query}")
|
|
@@ -287,58 +294,59 @@ async def test_text_query_endpoint(query: TextQuery):
|
|
| 287 |
return {"response": response}
|
| 288 |
|
| 289 |
|
| 290 |
-
#
|
|
|
|
|
|
|
| 291 |
async def process_audio(audio_path):
|
| 292 |
if not audio_path or not os.path.exists(audio_path):
|
| 293 |
return None, "No valid audio file received."
|
| 294 |
|
| 295 |
try:
|
| 296 |
-
#
|
| 297 |
with open(audio_path, "rb") as f:
|
| 298 |
audio_bytes = f.read()
|
| 299 |
-
|
| 300 |
-
if len(audio_bytes) == 0:
|
| 301 |
return None, "Empty audio file."
|
| 302 |
|
| 303 |
-
#
|
| 304 |
user_text = await run_in_threadpool(transcribe_audio, audio_path, audio_bytes)
|
| 305 |
if not user_text:
|
| 306 |
return None, "Couldn't understand audio. Try again."
|
| 307 |
|
| 308 |
logging.info(f"User: {user_text}")
|
| 309 |
|
| 310 |
-
#
|
| 311 |
agent_response = await get_agent_response(user_text)
|
| 312 |
if not agent_response:
|
| 313 |
return None, "No response generated."
|
| 314 |
|
| 315 |
logging.info(f"AI: {agent_response[:100]}...")
|
| 316 |
|
| 317 |
-
#
|
| 318 |
-
ai_audio_bytes = await run_in_threadpool(
|
| 319 |
-
generate_elevenlabs_sync, agent_response, ELEVENLABS_VOICE_NAME
|
| 320 |
-
)
|
| 321 |
if not ai_audio_bytes:
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
|
|
|
| 326 |
|
| 327 |
-
# Save to
|
| 328 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
| 329 |
f.write(ai_audio_bytes)
|
| 330 |
out_path = f.name
|
| 331 |
-
logging.info(f"Saved
|
| 332 |
-
|
| 333 |
|
| 334 |
return out_path, f"**You:** {user_text}\n\n**AI:** {agent_response}"
|
| 335 |
|
| 336 |
except Exception as e:
|
| 337 |
-
logging.error(f"Audio processing error: {e}", exc_info=True)
|
| 338 |
return None, f"Error: {str(e)}"
|
| 339 |
|
| 340 |
|
| 341 |
-
#
|
|
|
|
|
|
|
| 342 |
with gr.Blocks(title="Real Estate AI") as demo:
|
| 343 |
gr.Markdown("# Real Estate Voice Assistant")
|
| 344 |
gr.Markdown("Ask about projects in Pune, Mumbai, Bengaluru, etc.")
|
|
@@ -349,11 +357,12 @@ with gr.Blocks(title="Real Estate AI") as demo:
|
|
| 349 |
|
| 350 |
out_text = gr.Textbox(label="Conversation", lines=8)
|
| 351 |
|
| 352 |
-
inp.change(process_audio, inp, [out_audio, out_text])
|
| 353 |
|
| 354 |
-
#
|
| 355 |
-
# gr.Examples(examples=[], inputs=inp)
|
| 356 |
|
| 357 |
|
| 358 |
-
#
|
|
|
|
|
|
|
| 359 |
app = gr.mount_gradio_app(app, demo, path="/")
|
|
|
|
| 3 |
import json
|
| 4 |
import re
|
| 5 |
import tempfile
|
|
|
|
|
|
|
| 6 |
import logging
|
| 7 |
from contextlib import asynccontextmanager
|
| 8 |
from fastapi import FastAPI, Request, status, Depends, Header, HTTPException
|
|
|
|
| 18 |
# --- GRADIO ---
|
| 19 |
import gradio as gr
|
| 20 |
|
| 21 |
+
# --------------------------------------------------------------------------- #
|
| 22 |
+
# CONFIGURATION
|
| 23 |
+
# --------------------------------------------------------------------------- #
|
| 24 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
| 25 |
+
logging.getLogger("tensorflow").setLevel(logging.ERROR)
|
| 26 |
+
logging.basicConfig(
|
| 27 |
+
level=logging.INFO,
|
| 28 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
| 29 |
+
)
|
| 30 |
|
| 31 |
load_dotenv()
|
| 32 |
NEON_DATABASE_URL = os.getenv("NEON_DATABASE_URL")
|
|
|
|
| 34 |
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
|
| 35 |
SHARED_SECRET = os.getenv("SHARED_SECRET")
|
| 36 |
|
|
|
|
| 37 |
COLLECTION_NAME = "real_estate_embeddings"
|
| 38 |
EMBEDDING_MODEL = "hkunlp/instructor-large"
|
| 39 |
+
|
| 40 |
+
# *** HARD-CODED VOICE ID (as requested) ***
|
| 41 |
+
ELEVENLABS_VOICE_ID = "IvLWq57RKibBrqZGpQrC" # <-- your voice
|
| 42 |
+
|
| 43 |
PLANNER_MODEL = "gpt-4o-mini"
|
| 44 |
ANSWERER_MODEL = "gpt-4o"
|
| 45 |
+
|
| 46 |
TABLE_DESCRIPTIONS = """
|
| 47 |
- "ongoing_projects_source": Details about projects currently under construction.
|
| 48 |
- "upcoming_projects_source": Information on future planned projects.
|
|
|
|
| 52 |
- "feedback_source": Customer feedback and ratings for projects.
|
| 53 |
"""
|
| 54 |
|
| 55 |
+
# --------------------------------------------------------------------------- #
|
| 56 |
+
# CLIENTS
|
| 57 |
+
# --------------------------------------------------------------------------- #
|
| 58 |
embeddings = None
|
| 59 |
vector_store = None
|
| 60 |
client_openai = OpenAI(api_key=OPENAI_API_KEY)
|
| 61 |
+
client_elevenlabs = None
|
| 62 |
|
| 63 |
+
# ---- ElevenLabs init with detailed logging ---------------------------------
|
| 64 |
try:
|
| 65 |
+
key_preview = (
|
| 66 |
+
f"{ELEVENLABS_API_KEY[:5]}...{ELEVENLABS_API_KEY[-4:]}"
|
| 67 |
+
if ELEVENLABS_API_KEY and len(ELEVENLABS_API_KEY) > 9
|
| 68 |
+
else "None"
|
| 69 |
+
)
|
| 70 |
+
logging.info(f"Initializing ElevenLabs client with key: {key_preview}")
|
| 71 |
|
|
|
|
| 72 |
if not ELEVENLABS_API_KEY:
|
| 73 |
+
raise ValueError("ELEVENLABS_API_KEY is missing or empty.")
|
| 74 |
|
| 75 |
client_elevenlabs = ElevenLabs(api_key=ELEVENLABS_API_KEY)
|
| 76 |
+
logging.info(f"ElevenLabs client created β type: {type(client_elevenlabs)}")
|
| 77 |
|
| 78 |
+
# Verify we can list voices (optional, but proves the key works)
|
|
|
|
| 79 |
voices = client_elevenlabs.voices.get_all()
|
| 80 |
+
logging.info(f"Fetched {len(voices.voices)} voices from ElevenLabs.")
|
| 81 |
|
| 82 |
except Exception as e:
|
| 83 |
+
logging.error(f"ElevenLabs init failed: {e}", exc_info=True)
|
| 84 |
+
client_elevenlabs = None
|
| 85 |
+
|
| 86 |
+
# ---- Log SDK version -------------------------------------------------------
|
| 87 |
+
try:
|
| 88 |
+
import elevenlabs
|
| 89 |
|
| 90 |
+
logging.info(f"elevenlabs SDK version: {elevenlabs.__version__}")
|
| 91 |
+
except Exception:
|
| 92 |
+
logging.error("Could not import elevenlabs package.")
|
| 93 |
|
| 94 |
+
# --------------------------------------------------------------------------- #
|
| 95 |
+
# FASTAPI APP
|
| 96 |
+
# --------------------------------------------------------------------------- #
|
| 97 |
@asynccontextmanager
|
| 98 |
async def lifespan(app: FastAPI):
|
| 99 |
global embeddings, vector_store
|
|
|
|
| 111 |
yield
|
| 112 |
logging.info("Shutting down.")
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
app = FastAPI(lifespan=lifespan)
|
| 116 |
|
| 117 |
+
# --------------------------------------------------------------------------- #
|
| 118 |
+
# PROMPTS
|
| 119 |
+
# --------------------------------------------------------------------------- #
|
| 120 |
QUERY_FORMULATION_PROMPT = """
|
| 121 |
You are a query analysis agent. Transform the user's query into a precise search query and determine the correct table to filter by.
|
| 122 |
**Available Tables:**
|
|
|
|
| 127 |
2. If status keywords (ongoing, completed, upcoming, etc.) are present, pick the matching table.
|
| 128 |
3. If no status keyword, set filter_table to null.
|
| 129 |
4. Return JSON: {{"search_query": "...", "filter_table": "table_name or null"}}
|
| 130 |
+
""".strip()
|
| 131 |
|
| 132 |
ANSWER_SYSTEM_PROMPT = """
|
| 133 |
You are an expert AI assistant for a premier real estate developer.
|
|
|
|
| 139 |
1. Match user language (Hinglish β Hinglish, English β English).
|
| 140 |
2. Use CONTEXT if available, else use core knowledge.
|
| 141 |
3. Only answer real estate questions.
|
| 142 |
+
""".strip()
|
|
|
|
| 143 |
|
| 144 |
+
# --------------------------------------------------------------------------- #
|
| 145 |
+
# AUDIO & LLM HELPERS
|
| 146 |
+
# --------------------------------------------------------------------------- #
|
| 147 |
def transcribe_audio(audio_path: str, audio_bytes: bytes) -> str:
|
| 148 |
for attempt in range(3):
|
| 149 |
try:
|
| 150 |
audio_file = io.BytesIO(audio_bytes)
|
| 151 |
+
filename = os.path.basename(audio_path)
|
|
|
|
|
|
|
| 152 |
|
| 153 |
+
logging.info(f"Transcribing {filename} ({len(audio_bytes)} bytes)")
|
| 154 |
transcript = client_openai.audio.transcriptions.create(
|
| 155 |
model="whisper-1",
|
| 156 |
+
file=(filename, audio_file),
|
| 157 |
)
|
| 158 |
text = transcript.text.strip()
|
| 159 |
|
| 160 |
# Hinglish transliteration
|
| 161 |
+
if re.search(r"[\u0900-\u097F]", text):
|
| 162 |
+
resp = client_openai.chat.completions.create(
|
| 163 |
model="gpt-4o-mini",
|
| 164 |
+
messages=[
|
| 165 |
+
{"role": "user", "content": f"Transliterate to Roman (Hinglish): {text}"}
|
| 166 |
+
],
|
| 167 |
+
temperature=0.0,
|
| 168 |
)
|
| 169 |
+
text = resp.choices[0].message.content.strip()
|
| 170 |
|
| 171 |
logging.info(f"Transcribed: {text}")
|
| 172 |
return text
|
|
|
|
| 173 |
except Exception as e:
|
| 174 |
+
logging.error(f"Transcription error (attempt {attempt + 1}): {e}", exc_info=True)
|
| 175 |
if attempt == 2:
|
| 176 |
return ""
|
| 177 |
return ""
|
| 178 |
|
| 179 |
+
|
| 180 |
+
def generate_elevenlabs_sync(text: str) -> bytes:
|
| 181 |
+
"""
|
| 182 |
+
Uses the **hard-coded voice ID** and the correct SDK method
|
| 183 |
+
`client.text_to_speech.convert`.
|
| 184 |
+
"""
|
| 185 |
if client_elevenlabs is None:
|
| 186 |
+
logging.error("ElevenLabs client not initialized β skipping TTS.")
|
| 187 |
+
return b""
|
|
|
|
| 188 |
|
| 189 |
for attempt in range(3):
|
| 190 |
try:
|
| 191 |
+
logging.info("Calling ElevenLabs text_to_speech.convert...")
|
| 192 |
+
stream = client_elevenlabs.text_to_speech.convert(
|
| 193 |
+
voice_id=ELEVENLABS_VOICE_ID,
|
| 194 |
text=text,
|
|
|
|
| 195 |
model="eleven_multilingual_v2",
|
| 196 |
+
output_format="mp3_44100_128",
|
| 197 |
)
|
| 198 |
+
# The SDK returns a generator of bytes β collect everything
|
| 199 |
+
audio_bytes = b""
|
| 200 |
+
for chunk in stream:
|
| 201 |
+
if chunk:
|
| 202 |
+
audio_bytes += chunk
|
| 203 |
+
logging.info(f"TTS returned {len(audio_bytes)} bytes.")
|
| 204 |
+
return audio_bytes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
except Exception as e:
|
| 206 |
+
logging.error(
|
| 207 |
+
f"ElevenLabs TTS error (attempt {attempt + 1}): {e}", exc_info=True
|
| 208 |
+
)
|
| 209 |
if attempt == 2:
|
| 210 |
+
return b""
|
| 211 |
+
return b""
|
| 212 |
+
|
| 213 |
|
| 214 |
async def formulate_search_plan(user_query: str) -> dict:
|
| 215 |
+
logging.info(f"Formulating search plan for: {user_query}")
|
| 216 |
for attempt in range(3):
|
| 217 |
try:
|
| 218 |
+
formatted = QUERY_FORMULATION_PROMPT.format(
|
| 219 |
+
table_descriptions=TABLE_DESCRIPTIONS, user_query=user_query
|
|
|
|
|
|
|
| 220 |
)
|
| 221 |
+
resp = await run_in_threadpool(
|
|
|
|
| 222 |
client_openai.chat.completions.create,
|
| 223 |
model=PLANNER_MODEL,
|
| 224 |
+
messages=[{"role": "user", "content": formatted}],
|
| 225 |
response_format={"type": "json_object"},
|
| 226 |
+
temperature=0.0,
|
| 227 |
)
|
| 228 |
+
raw = resp.choices[0].message.content
|
| 229 |
+
logging.info(f"Planner raw response: {raw}")
|
| 230 |
+
plan = json.loads(raw)
|
| 231 |
+
logging.info(f"Parsed plan: {plan}")
|
|
|
|
|
|
|
|
|
|
| 232 |
return plan
|
| 233 |
except Exception as e:
|
| 234 |
+
logging.error(f"Planner error (attempt {attempt + 1}): {e}", exc_info=True)
|
|
|
|
| 235 |
if attempt == 2:
|
|
|
|
| 236 |
return {"search_query": user_query, "filter_table": None}
|
|
|
|
|
|
|
| 237 |
return {"search_query": user_query, "filter_table": None}
|
| 238 |
|
| 239 |
+
|
| 240 |
async def get_agent_response(user_text: str) -> str:
|
| 241 |
for attempt in range(3):
|
| 242 |
try:
|
| 243 |
plan = await formulate_search_plan(user_text)
|
| 244 |
+
search_q = plan.get("search_query", user_text)
|
| 245 |
+
filter_tbl = plan.get("filter_table")
|
| 246 |
+
search_filter = {"source_table": filter_tbl} if filter_tbl else {}
|
| 247 |
|
| 248 |
docs = await run_in_threadpool(
|
| 249 |
vector_store.similarity_search,
|
| 250 |
+
search_q,
|
| 251 |
+
k=3,
|
| 252 |
+
filter=search_filter,
|
| 253 |
)
|
| 254 |
if not docs:
|
| 255 |
+
docs = await run_in_threadpool(vector_store.similarity_search, search_q, k=3)
|
| 256 |
|
| 257 |
+
context = "\n\n".join(d.page_content for d in docs)
|
| 258 |
|
| 259 |
+
resp = await run_in_threadpool(
|
| 260 |
client_openai.chat.completions.create,
|
| 261 |
model=ANSWERER_MODEL,
|
| 262 |
messages=[
|
| 263 |
{"role": "system", "content": ANSWER_SYSTEM_PROMPT},
|
| 264 |
{"role": "system", "content": f"CONTEXT:\n{context}"},
|
| 265 |
+
{"role": "user", "content": f"Question: {user_text}"},
|
| 266 |
+
],
|
| 267 |
)
|
| 268 |
+
return resp.choices[0].message.content.strip()
|
| 269 |
except Exception as e:
|
| 270 |
+
logging.error(f"RAG error (attempt {attempt + 1}): {e}", exc_info=True)
|
| 271 |
if attempt == 2:
|
| 272 |
return "Sorry, I couldn't respond. Please try again."
|
| 273 |
return "Sorry, I couldn't respond."
|
| 274 |
|
| 275 |
|
| 276 |
+
# --------------------------------------------------------------------------- #
|
| 277 |
+
# AUTH ENDPOINT
|
| 278 |
+
# --------------------------------------------------------------------------- #
|
| 279 |
class TextQuery(BaseModel):
|
| 280 |
query: str
|
| 281 |
|
| 282 |
+
|
| 283 |
async def verify_token(x_auth_token: str = Header(...)):
|
| 284 |
if not SHARED_SECRET or x_auth_token != SHARED_SECRET:
|
| 285 |
logging.warning("Auth failed for /test-text-query")
|
| 286 |
raise HTTPException(status_code=401, detail="Invalid token")
|
| 287 |
logging.info("Auth passed")
|
| 288 |
|
| 289 |
+
|
| 290 |
@app.post("/test-text-query", dependencies=[Depends(verify_token)])
|
| 291 |
async def test_text_query_endpoint(query: TextQuery):
|
| 292 |
logging.info(f"Text query: {query.query}")
|
|
|
|
| 294 |
return {"response": response}
|
| 295 |
|
| 296 |
|
| 297 |
+
# --------------------------------------------------------------------------- #
|
| 298 |
+
# GRADIO PIPELINE
|
| 299 |
+
# --------------------------------------------------------------------------- #
|
| 300 |
async def process_audio(audio_path):
|
| 301 |
if not audio_path or not os.path.exists(audio_path):
|
| 302 |
return None, "No valid audio file received."
|
| 303 |
|
| 304 |
try:
|
| 305 |
+
# ---- 1. READ RAW BYTES ------------------------------------------------
|
| 306 |
with open(audio_path, "rb") as f:
|
| 307 |
audio_bytes = f.read()
|
| 308 |
+
if not audio_bytes:
|
|
|
|
| 309 |
return None, "Empty audio file."
|
| 310 |
|
| 311 |
+
# ---- 2. TRANSCRIBE ----------------------------------------------------
|
| 312 |
user_text = await run_in_threadpool(transcribe_audio, audio_path, audio_bytes)
|
| 313 |
if not user_text:
|
| 314 |
return None, "Couldn't understand audio. Try again."
|
| 315 |
|
| 316 |
logging.info(f"User: {user_text}")
|
| 317 |
|
| 318 |
+
# ---- 3. GET AI RESPONSE -----------------------------------------------
|
| 319 |
agent_response = await get_agent_response(user_text)
|
| 320 |
if not agent_response:
|
| 321 |
return None, "No response generated."
|
| 322 |
|
| 323 |
logging.info(f"AI: {agent_response[:100]}...")
|
| 324 |
|
| 325 |
+
# ---- 4. TEXT-TO-SPEECH ------------------------------------------------
|
| 326 |
+
ai_audio_bytes = await run_in_threadpool(generate_elevenlabs_sync, agent_response)
|
|
|
|
|
|
|
| 327 |
if not ai_audio_bytes:
|
| 328 |
+
logging.error("TTS failed β returning text only.")
|
| 329 |
+
return (
|
| 330 |
+
None,
|
| 331 |
+
f"**You:** {user_text}\n\n**AI:** {agent_response}\n\n_(Audio generation failed)_",
|
| 332 |
+
)
|
| 333 |
|
| 334 |
+
# Save to a temporary file for Gradio
|
| 335 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
| 336 |
f.write(ai_audio_bytes)
|
| 337 |
out_path = f.name
|
| 338 |
+
logging.info(f"Saved TTS audio to {out_path}")
|
|
|
|
| 339 |
|
| 340 |
return out_path, f"**You:** {user_text}\n\n**AI:** {agent_response}"
|
| 341 |
|
| 342 |
except Exception as e:
|
| 343 |
+
logging.error(f"Audio processing error: {e}", exc_info=True)
|
| 344 |
return None, f"Error: {str(e)}"
|
| 345 |
|
| 346 |
|
| 347 |
+
# --------------------------------------------------------------------------- #
|
| 348 |
+
# GRADIO UI
|
| 349 |
+
# --------------------------------------------------------------------------- #
|
| 350 |
with gr.Blocks(title="Real Estate AI") as demo:
|
| 351 |
gr.Markdown("# Real Estate Voice Assistant")
|
| 352 |
gr.Markdown("Ask about projects in Pune, Mumbai, Bengaluru, etc.")
|
|
|
|
| 357 |
|
| 358 |
out_text = gr.Textbox(label="Conversation", lines=8)
|
| 359 |
|
| 360 |
+
inp.change(process_audio, inputs=inp, outputs=[out_audio, out_text])
|
| 361 |
|
| 362 |
+
# No examples β they caused FileNotFound errors when clicking text.
|
|
|
|
| 363 |
|
| 364 |
|
| 365 |
+
# --------------------------------------------------------------------------- #
|
| 366 |
+
# MOUNT GRADIO
|
| 367 |
+
# --------------------------------------------------------------------------- #
|
| 368 |
app = gr.mount_gradio_app(app, demo, path="/")
|