import os import io import json import re import tempfile import asyncio from typing import Optional import logging from contextlib import asynccontextmanager from fastapi import FastAPI, Request, status, Depends, Header, HTTPException from fastapi.concurrency import run_in_threadpool from pydantic import BaseModel from dotenv import load_dotenv from openai import OpenAI from elevenlabs.client import ElevenLabs from langchain_huggingface import HuggingFaceEmbeddings from langchain_postgres.vectorstores import PGVector from sqlalchemy import create_engine # --- GRADIO --- import gradio as gr # --- SETUP --- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' logging.getLogger('tensorflow').setLevel(logging.ERROR) logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') load_dotenv() NEON_DATABASE_URL = os.getenv("NEON_DATABASE_URL") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY") SHARED_SECRET = os.getenv("SHARED_SECRET") # --- CONFIG --- COLLECTION_NAME = "real_estate_embeddings" EMBEDDING_MODEL = "hkunlp/instructor-large" ELEVENLABS_VOICE_NAME = "Leo" PLANNER_MODEL = "gpt-4o-mini" ANSWERER_MODEL = "gpt-4o" TABLE_DESCRIPTIONS = """ - "ongoing_projects_source": Details about projects currently under construction. - "upcoming_projects_source": Information on future planned projects. - "completed_projects_source": Facts about projects that are already finished. - "historical_sales_source": Specific sales records, including price, date, and property ID. - "past_customers_source": Information about previous customers. - "feedback_source": Customer feedback and ratings for projects. """ # --- CLIENTS --- embeddings = None vector_store = None client_openai = OpenAI(api_key=OPENAI_API_KEY) client_elevenlabs = ElevenLabs(api_key=ELEVENLABS_API_KEY) # --- LIFESPAN --- @asynccontextmanager async def lifespan(app: FastAPI): global embeddings, vector_store logging.info(f"Loading embedding model: {EMBEDDING_MODEL}") embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL) logging.info(f"Connecting to vector store: {COLLECTION_NAME}") engine = create_engine(NEON_DATABASE_URL, pool_pre_ping=True) vector_store = PGVector( connection=engine, collection_name=COLLECTION_NAME, embeddings=embeddings, ) logging.info("Vector store ready.") yield logging.info("Shutting down.") app = FastAPI(lifespan=lifespan) # --- PROMPTS --- QUERY_FORMULATION_PROMPT = f""" You are a query analysis agent. Transform the user's query into a precise search query and determine the correct table to filter by. **Available Tables:** {TABLE_DESCRIPTIONS} **User's Query:** "{{user_query}}" **Task:** 1. Rephrase into a clear, keyword-focused English search query. 2. If status keywords (ongoing, completed, upcoming, etc.) are present, pick the matching table. 3. If no status keyword, set filter_table to null. 4. Return JSON: {{"search_query": "...", "filter_table": "table_name or null"}} """ ANSWER_SYSTEM_PROMPT = """ You are an expert AI assistant for a premier real estate developer. ## CORE KNOWLEDGE - Cities: Pune, Mumbai, Bengaluru, Delhi, Chennai, Hyderabad, Goa, Gurgaon, Kolkata. - Properties: Luxury apartments, villas, commercial. - Budget: 45 lakhs to 5 crores. ## RULES 1. Match user language (Hinglish → Hinglish, English → English). 2. Use CONTEXT if available, else use core knowledge. 3. Only answer real estate questions. """ # --- FIXED: transcribe_audio accepts path + bytes --- def transcribe_audio(audio_path: str, audio_bytes: bytes) -> str: for attempt in range(3): try: audio_file = io.BytesIO(audio_bytes) filename = os.path.basename(audio_path) # e.g., "audio.wav" logging.info(f"Transcribing audio: {filename} ({len(audio_bytes)} bytes)") transcript = client_openai.audio.transcriptions.create( model="whisper-1", file=(filename, audio_file) # ← Critical: gives format hint ) text = transcript.text.strip() # Hinglish transliteration if re.search(r'[\u0900-\u097F]', text): response = client_openai.chat.completions.create( model="gpt-4o-mini", messages=[{"role": "user", "content": f"Transliterate to Roman (Hinglish): {text}"}], temperature=0.0 ) text = response.choices[0].message.content.strip() logging.info(f"Transcribed: {text}") return text except Exception as e: logging.error(f"Transcription error (attempt {attempt+1}): {e}") if attempt == 2: return "" return "" def generate_elevenlabs_sync(text: str, voice: str) -> bytes: for attempt in range(3): try: return client_elevenlabs.generate( text=text, voice=voice, model="eleven_multilingual_v2", output_format="mp3_44100_128" ) except Exception as e: logging.error(f"ElevenLabs error (attempt {attempt+1}): {e}") if attempt == 2: return b'' return b'' async def formulate_search_plan(user_query: str) -> dict: for attempt in range(3): try: response = await run_in_threadpool( client_openai.chat.completions.create, model=PLANNER_MODEL, messages=[{"role": "user", "content": QUERY_FORMULATION_PROMPT.format(user_query=user_query)}], response_format={"type": "json_object"}, temperature=0.0 ) return json.loads(response.choices[0].message.content) except Exception as e: logging.error(f"Planner error (attempt {attempt+1}): {e}") if attempt == 2: return {"search_query": user_query, "filter_table": None} return {"search_query": user_query, "filter_table": None} async def get_agent_response(user_text: str) -> str: for attempt in range(3): try: plan = await formulate_search_plan(user_text) search_query = plan.get("search_query", user_text) filter_table = plan.get("filter_table") search_filter = {"source_table": filter_table} if filter_table else {} docs = await run_in_threadpool( vector_store.similarity_search, search_query, k=3, filter=search_filter ) if not docs: docs = await run_in_threadpool(vector_store.similarity_search, search_query, k=3) context = "\n\n".join([d.page_content for d in docs]) response = await run_in_threadpool( client_openai.chat.completions.create, model=ANSWERER_MODEL, messages=[ {"role": "system", "content": ANSWER_SYSTEM_PROMPT}, {"role": "system", "content": f"CONTEXT:\n{context}"}, {"role": "user", "content": f"Question: {user_text}"} ] ) return response.choices[0].message.content.strip() except Exception as e: logging.error(f"RAG error (attempt {attempt+1}): {e}") if attempt == 2: return "Sorry, I couldn't respond. Please try again." return "Sorry, I couldn't respond." # --- AUTH ENDPOINT --- class TextQuery(BaseModel): query: str async def verify_token(x_auth_token: str = Header(...)): if not SHARED_SECRET or x_auth_token != SHARED_SECRET: logging.warning("Auth failed for /test-text-query") raise HTTPException(status_code=401, detail="Invalid token") logging.info("Auth passed") @app.post("/test-text-query", dependencies=[Depends(verify_token)]) async def test_text_query_endpoint(query: TextQuery): logging.info(f"Text query: {query.query}") response = await get_agent_response(query.query) return {"response": response} # --- FIXED: process_audio passes path + bytes --- async def process_audio(audio_path): if not audio_path or not os.path.exists(audio_path): return None, "No valid audio file received." try: # Read raw bytes with open(audio_path, "rb") as f: audio_bytes = f.read() if len(audio_bytes) == 0: return None, "Empty audio file." # 1. Transcribe — pass path + bytes user_text = await run_in_threadpool(transcribe_audio, audio_path, audio_bytes) if not user_text: return None, "Couldn't understand audio. Try again." logging.info(f"User: {user_text}") # 2. AI Response agent_response = await get_agent_response(user_text) if not agent_response: return None, "No response generated." logging.info(f"AI: {agent_response[:100]}...") # 3. Generate Speech ai_audio_bytes = await run_in_threadpool( generate_elevenlabs_sync, agent_response, ELEVENLABS_VOICE_NAME ) if not ai_audio_bytes: return None, "Failed to generate voice." # Save to temp file with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f: f.write(ai_audio_bytes) out_path = f.name return out_path, f"**You:** {user_text}\n\n**AI:** {agent_response}" except Exception as e: logging.error(f"Audio processing error: {e}", exc_info=True) return None, f"Error: {str(e)}" # --- GRADIO UI --- with gr.Blocks(title="Real Estate AI") as demo: gr.Markdown("# Real Estate Voice Assistant") gr.Markdown("Ask about projects in Pune, Mumbai, Bengaluru, etc.") with gr.Row(): inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak") out_audio = gr.Audio(label="AI Response", type="filepath") out_text = gr.Textbox(label="Conversation", lines=8) # Only trigger on real file (not example text) inp.change(process_audio, inp, [out_audio, out_text]) # --- FIXED: Examples now use real audio files (optional) --- # Remove text examples to avoid FileNotFoundError # Or: Record real .wav files and upload to repo # For now: disable examples # gr.Examples(examples=[], inputs=inp) # --- MOUNT GRADIO --- app = gr.mount_gradio_app(app, demo, path="/")