Commit
·
b009852
1
Parent(s):
3fc6785
Push Files
Browse files- .gitignore +3 -0
- __init__.py +2 -0
- embedding_generator.py +86 -0
- main.py +49 -0
- requirements.txt +4 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
venv/
|
| 2 |
+
.env
|
| 3 |
+
__pycache__/
|
__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
sys.path.append("..")
|
embedding_generator.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import login, from_pretrained_keras
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import glob
|
| 5 |
+
import time
|
| 6 |
+
import h5py
|
| 7 |
+
import numpy as np
|
| 8 |
+
# import pandas as pd
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
import tensorflow as tf
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 17 |
+
if hf_token is None:
|
| 18 |
+
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
| 19 |
+
login(token=hf_token)
|
| 20 |
+
|
| 21 |
+
def load_model():
|
| 22 |
+
"""Load PathFoundation model from Hugging Face"""
|
| 23 |
+
print("Loading PathFoundation model...")
|
| 24 |
+
model = from_pretrained_keras("google/path-foundation")
|
| 25 |
+
infer = model.signatures["serving_default"]
|
| 26 |
+
print("Model loaded!")
|
| 27 |
+
return infer
|
| 28 |
+
|
| 29 |
+
def load_model():
|
| 30 |
+
"""Load PathFoundation model from Hugging Face"""
|
| 31 |
+
print("Loading PathFoundation model...")
|
| 32 |
+
import tensorflow as tf
|
| 33 |
+
import keras
|
| 34 |
+
from huggingface_hub import snapshot_download
|
| 35 |
+
|
| 36 |
+
# Download the model from HuggingFace
|
| 37 |
+
model_path = snapshot_download(repo_id="google/path-foundation")
|
| 38 |
+
|
| 39 |
+
# Load as TFSMLayer
|
| 40 |
+
model = keras.layers.TFSMLayer(
|
| 41 |
+
model_path,
|
| 42 |
+
call_endpoint='serving_default'
|
| 43 |
+
)
|
| 44 |
+
print("Model loaded!")
|
| 45 |
+
return model
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def process_image(image_input, infer_function):
|
| 49 |
+
"""Process a single image and get embedding
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
image_input: Either a file path (str) or image data (bytes/BytesIO/numpy array)
|
| 53 |
+
infer_function: The model inference function
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
Embedding vector or None if processing fails
|
| 57 |
+
"""
|
| 58 |
+
try:
|
| 59 |
+
# Handle different input types
|
| 60 |
+
if isinstance(image_input, str):
|
| 61 |
+
# It's a file path
|
| 62 |
+
img = Image.open(image_input).convert('RGB')
|
| 63 |
+
elif isinstance(image_input, bytes) or hasattr(image_input, 'read'):
|
| 64 |
+
# It's image data from frontend (bytes or BytesIO)
|
| 65 |
+
img = Image.open(image_input).convert('RGB')
|
| 66 |
+
elif isinstance(image_input, np.ndarray):
|
| 67 |
+
# It's already a numpy array
|
| 68 |
+
img = Image.fromarray(image_input.astype('uint8')).convert('RGB')
|
| 69 |
+
else:
|
| 70 |
+
raise ValueError(f"Unsupported image input type: {type(image_input)}")
|
| 71 |
+
|
| 72 |
+
# Resize to 224x224 if needed
|
| 73 |
+
if img.size != (224, 224):
|
| 74 |
+
img = img.resize((224, 224))
|
| 75 |
+
# Convert to tensor and normalize
|
| 76 |
+
tensor = tf.cast(tf.expand_dims(np.array(img), axis=0), tf.float32) / 255.0
|
| 77 |
+
|
| 78 |
+
# Get embedding
|
| 79 |
+
embeddings = infer_function(tf.constant(tensor))
|
| 80 |
+
|
| 81 |
+
embedding_vector = embeddings['output_0'].numpy().flatten()
|
| 82 |
+
|
| 83 |
+
return embedding_vector
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f"Error processing image: {e}")
|
| 86 |
+
return None
|
main.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
import uvicorn
|
| 4 |
+
from typing import List
|
| 5 |
+
import os
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import io
|
| 9 |
+
from embedding_generator import load_model, process_image
|
| 10 |
+
|
| 11 |
+
app = FastAPI(title="Medical Image Embedding Generator")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
global infer
|
| 15 |
+
infer = load_model()
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@app.post("/embeddings")
|
| 19 |
+
async def generate_embeddings(file: UploadFile = File(...)):
|
| 20 |
+
"""
|
| 21 |
+
Upload a medical image (JPEG, PNG, TIFF) and get embeddings
|
| 22 |
+
"""
|
| 23 |
+
content_type = file.content_type
|
| 24 |
+
if not (content_type.startswith("image/") or
|
| 25 |
+
file.filename.endswith((".tif", ".tiff", ".jpg", ".jpeg", ".png", ".bmp"))):
|
| 26 |
+
raise HTTPException(status_code=400, detail="File must be an image (JPEG, PNG, BMP) or TIFF format")
|
| 27 |
+
|
| 28 |
+
try:
|
| 29 |
+
# Read the file content
|
| 30 |
+
embedding = process_image(file.file, infer)
|
| 31 |
+
if embedding is None:
|
| 32 |
+
raise HTTPException(status_code=500, detail="Error processing image")
|
| 33 |
+
|
| 34 |
+
return_content = {
|
| 35 |
+
"filename": file.filename,
|
| 36 |
+
"embedding": embedding.tolist(),
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
return JSONResponse(content=return_content)
|
| 40 |
+
|
| 41 |
+
except Exception as e:
|
| 42 |
+
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
| 43 |
+
|
| 44 |
+
@app.get("/")
|
| 45 |
+
async def root():
|
| 46 |
+
return {"message": "Welcome to Medical Image Embedding Generator API. Use /embeddings endpoint to upload images."}
|
| 47 |
+
|
| 48 |
+
if __name__ == "__main__":
|
| 49 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tf-nightly[and-cuda]
|
| 2 |
+
python-dotenv
|
| 3 |
+
pillow
|
| 4 |
+
huggingface-hub
|