import torch, torch.nn as nn, torch.nn.functional as F batch_size = 64 max_len = 256 d_model = 384 n_layer = 6 # 6 blocks in the decoder n_head = 6 d_q = int(d_model / n_head) dropout = 0.2 vocab_size = 65 from block import Block class Model(nn.Module): def __init__(self): super().__init__() self.token_embedding_table = nn.Embedding(vocab_size, d_model) # Embedding matrix size: (65, 384) self.positional_embedding_table = nn.Embedding(max_len, d_model) # Position matrix size: (256, 384) self.blocks = nn.Sequential(*[Block(d_model, n_head) for _ in range(n_layer)]) self.ln = nn.LayerNorm(d_model) self.unembedding_matrix_calc = nn.Linear(d_model, vocab_size) def forward(self, idx, targets=None): B, S = idx.shape tok_emb = self.token_embedding_table(idx) # Size of embedding: (B, S, 384) pos_emb = self.positional_embedding_table(torch.arange(S, device=idx.device)) # Shape: (S, 384) x = tok_emb + pos_emb x = self.blocks(x) # Pass through all 6 blocks each of all 6 heads x = self.ln(x) logits = self.unembedding_matrix_calc(x) # --> (B, S, 384) * (384, 65) --> (B, S, 65) if targets is None: loss = None else: B, S, V = logits.shape logits = logits.view(-1, V) # (B, S, V) --> (B*S, V) targets = targets.view(-1) # --> (B, S) --> (B*S) loss = F.cross_entropy(logits, targets) # Handles softmax interally as well (better because it does log addition which reduces errors instead of log multi) return logits, loss def generate(self, idx, max_new_tokens): for _ in range(max_new_tokens): idx_cond = idx[:, -max_len:] logits, loss = self(idx_cond) logits = logits[:, -1, :] probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim = 1) return idx if __name__ == "__main__": model = Model() idx = torch.zeros((batch_size, max_len), dtype=torch.long) logits, loss = model(idx, idx) print("Input shape:", idx.shape) print("Output logits shape:", logits.shape) print("Calculated loss:", loss.item())