Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -118,8 +118,11 @@ def estimate_depth(pil_image: Image.Image) ->Image.Image:
|
|
| 118 |
|
| 119 |
|
| 120 |
def generate_image_for_gradio(
|
|
|
|
| 121 |
input_image_for_depth: Image.Image,
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
) -> Image.Image:
|
| 124 |
|
| 125 |
global pipeline
|
|
@@ -152,49 +155,26 @@ def generate_image_for_gradio(
|
|
| 152 |
generated_images = pipeline(
|
| 153 |
prompt,
|
| 154 |
image=input_image_for_pipeline,
|
| 155 |
-
num_inference_steps=
|
| 156 |
-
guidance_scale=
|
| 157 |
generator=generator,
|
| 158 |
).images
|
| 159 |
|
| 160 |
-
|
| 161 |
-
# generated_images = pipeline(
|
| 162 |
-
# prompt,
|
| 163 |
-
# negative_prompt,
|
| 164 |
-
# image=input_image_for_pipeline,
|
| 165 |
-
# num_inference_steps=25,
|
| 166 |
-
# # guidance_scale=8.0,
|
| 167 |
-
# strength = 0.85,
|
| 168 |
-
# generator=generator,
|
| 169 |
-
# ).images
|
| 170 |
-
|
| 171 |
print(f"Image generation complete (seed: {seed}).")
|
| 172 |
return generated_images[0]
|
| 173 |
|
| 174 |
|
| 175 |
|
| 176 |
-
# iface = gr.Interface(
|
| 177 |
-
# fn=generate_image_for_gradio,
|
| 178 |
-
# inputs=[
|
| 179 |
-
# gr.Textbox(label="Prompt", value="a high-quality photo of a modern interior design"),
|
| 180 |
-
# gr.Image(type="pil", label="Input Image (for Depth Estimation)"),
|
| 181 |
-
# gr.Slider(minimum=10, maximum=100, value=25, step=1, label="Inference Steps"),
|
| 182 |
-
# gr.Slider(minimum=1.0, maximum=20.0, value=8.0, step=0.5, label="Guidance Scale"),
|
| 183 |
-
# gr.Number(label="Seed (optional, leave blank for random)", value=None),
|
| 184 |
-
# gr.Number(label="Resolution", value=512, interactive=False)
|
| 185 |
-
# ],
|
| 186 |
-
# outputs=gr.Image(type="pil", label="Generated Image"),
|
| 187 |
-
# title="Stable Diffusion ControlNet Depth Demo (with Depth Estimation)",
|
| 188 |
-
# description="Upload an input image, and the app will estimate its depth map, then use it with your prompt to generate a new image. This allows for structural guidance from your input photo.",
|
| 189 |
-
# allow_flagging="never",
|
| 190 |
-
# live=False,
|
| 191 |
-
# theme=Soft(),
|
| 192 |
-
|
| 193 |
iface = gr.Interface(
|
| 194 |
fn=generate_image_for_gradio,
|
| 195 |
inputs=[
|
| 196 |
-
gr.Image(type="pil", label="Input Image (for Depth Estimation)"),
|
| 197 |
gr.Textbox(label="Prompt", value="a high-quality photo of a modern interior design"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
],
|
| 199 |
outputs=gr.Image(type="pil", label="Generated Image"),
|
| 200 |
title="Stable Diffusion ControlNet Depth Demo (with Depth Estimation)",
|
|
|
|
| 118 |
|
| 119 |
|
| 120 |
def generate_image_for_gradio(
|
| 121 |
+
prompt: str,
|
| 122 |
input_image_for_depth: Image.Image,
|
| 123 |
+
num_inference_step: int,
|
| 124 |
+
guidance_scale: float,
|
| 125 |
+
|
| 126 |
) -> Image.Image:
|
| 127 |
|
| 128 |
global pipeline
|
|
|
|
| 155 |
generated_images = pipeline(
|
| 156 |
prompt,
|
| 157 |
image=input_image_for_pipeline,
|
| 158 |
+
num_inference_steps=num_inference_step,
|
| 159 |
+
guidance_scale = guidance_scale,
|
| 160 |
generator=generator,
|
| 161 |
).images
|
| 162 |
|
| 163 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
print(f"Image generation complete (seed: {seed}).")
|
| 165 |
return generated_images[0]
|
| 166 |
|
| 167 |
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
iface = gr.Interface(
|
| 170 |
fn=generate_image_for_gradio,
|
| 171 |
inputs=[
|
|
|
|
| 172 |
gr.Textbox(label="Prompt", value="a high-quality photo of a modern interior design"),
|
| 173 |
+
gr.Image(type="pil", label="Input Image (for Depth Estimation)"),
|
| 174 |
+
gr.Slider(minimum=10, maximum=100, value=25, step=1, label="Inference Steps"),
|
| 175 |
+
gr.Slider(minimum=1.0, maximum=20.0, value=8.0, step=0.5, label="Guidance Scale"),
|
| 176 |
+
# gr.Number(label="Seed (optional, leave blank for random)", value=None),
|
| 177 |
+
# gr.Number(label="Resolution", value=512, interactive=False)
|
| 178 |
],
|
| 179 |
outputs=gr.Image(type="pil", label="Generated Image"),
|
| 180 |
title="Stable Diffusion ControlNet Depth Demo (with Depth Estimation)",
|