Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| import gradio as gr | |
| from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
| # Environment variables | |
| os.environ["TOKENIZERS_PARALLELISM"] = "0" | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
| # Global variables for model and tokenizer | |
| model = None | |
| tokenizer = None | |
| def get_gpu_memory(): | |
| return torch.cuda.memory_allocated() / 1024 / 1024 # Convert to MiB | |
| class TorchTracemalloc: | |
| def __init__(self): | |
| self.begin = 0 | |
| self.peak = 0 | |
| def __enter__(self): | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_peak_memory_stats() | |
| torch.cuda.synchronize() | |
| self.begin = get_gpu_memory() | |
| return self | |
| def __exit__(self, *exc): | |
| torch.cuda.synchronize() | |
| self.peak = ( | |
| torch.cuda.max_memory_allocated() / 1024 / 1024 | |
| ) # Convert to MiB | |
| def consumed(self): | |
| return self.peak - self.begin | |
| def load_model_and_tokenizer(model_name, dtype, kv_bits): | |
| global model, tokenizer | |
| if model is None or tokenizer is None: | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| special_tokens = {"pad_token": "<PAD>"} | |
| tokenizer.add_special_tokens(special_tokens) | |
| config = AutoConfig.from_pretrained(model_name) | |
| if kv_bits != "unquantized": | |
| quantizer_path = f"codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad" | |
| setattr(config, "quantizer_path", quantizer_path) | |
| dtype = torch.__dict__.get(dtype, torch.float32) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto") | |
| if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: | |
| model.resize_token_embeddings(len(tokenizer)) | |
| tokenizer.padding_side = "left" | |
| model.config.pad_token_id = tokenizer.pad_token_id | |
| return model, tokenizer | |
| # Initialize model and tokenizer | |
| model, tokenizer = load_model_and_tokenizer("NousResearch/Hermes-2-Theta-Llama-3-8B", "fp16", "1") | |
| def process_dialog(dialog, model, tokenizer, max_tokens, temperature): | |
| prompt = tokenizer.apply_chat_template( | |
| dialog, tokenize=False, add_generation_prompt=True | |
| ) | |
| tokenized_input_prompt_ids = tokenizer( | |
| prompt, return_tensors="pt" | |
| ).input_ids.to(model.device) | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_peak_memory_stats() | |
| with TorchTracemalloc() as tt: | |
| start_time = time.time() | |
| with torch.no_grad(): | |
| token_ids_for_each_answer = model.generate( | |
| tokenized_input_prompt_ids, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| do_sample=True, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.pad_token_id, | |
| ) | |
| torch.cuda.synchronize() | |
| end_time = time.time() | |
| response = token_ids_for_each_answer[0][ | |
| tokenized_input_prompt_ids.shape[-1] : | |
| ] | |
| cleaned_response = tokenizer.decode( | |
| response, | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=True, | |
| ) | |
| return cleaned_response | |
| def respond(message, history, system_message, max_tokens, temperature): | |
| dialog = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| dialog.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| dialog.append({"role": "assistant", "content": val[1]}) | |
| dialog.append({"role": "user", "content": message}) | |
| response = process_dialog(dialog, model, tokenizer, max_tokens, temperature) | |
| history.append((message, response)) | |
| return history, history | |
| # Initialize Gradio ChatInterface | |
| demo = gr.ChatInterface( | |
| fn=respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| ], | |
| theme="default", | |
| title="1bit llama3 by xMAD.ai", | |
| description="The first industrial level 1 bit quantization Llama3, we can achieve 800 tokens per second on NVIDIA V100 and 1200 on NVIDIA A100, 90% cost down of your cloud hosting cost", | |
| css=".scrollable { height: 400px; overflow-y: auto; padding: 10px; border: 1px solid #ccc; }" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |