Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import time | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
| os.environ["TOKENIZERS_PARALLELISM"] = "0" | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
| def get_gpu_memory(): | |
| return torch.cuda.memory_allocated() / 1024 / 1024 # Convert to MiB | |
| class TorchTracemalloc: | |
| def __init__(self): | |
| self.begin = 0 | |
| self.peak = 0 | |
| def __enter__(self): | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_peak_memory_stats() | |
| torch.cuda.synchronize() | |
| self.begin = get_gpu_memory() | |
| return self | |
| def __exit__(self, *exc): | |
| torch.cuda.synchronize() | |
| self.peak = ( | |
| torch.cuda.max_memory_allocated() / 1024 / 1024 | |
| ) # Convert to MiB | |
| def consumed(self): | |
| return self.peak - self.begin | |
| def load_model_and_tokenizer(): | |
| model_name = "NousResearch/Hermes-2-Theta-Llama-3-8B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| special_tokens = {"pad_token": "<PAD>"} | |
| tokenizer.add_special_tokens(special_tokens) | |
| config = AutoConfig.from_pretrained(model_name) | |
| setattr( | |
| config, | |
| "quantizer_path", | |
| f"codebooks/Hermes-2-Theta-Llama-3-8B_1bit.xmad", | |
| ) | |
| setattr(config, "window_length", 32) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, config=config, torch_dtype=torch.float16, device_map="cuda:2" | |
| ) | |
| if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: | |
| print( | |
| "WARNING: Resizing the embedding matrix to match the tokenizer vocab size." | |
| ) | |
| model.resize_token_embeddings(len(tokenizer)) | |
| model.config.pad_token_id = tokenizer.pad_token_id | |
| return model, tokenizer | |
| def process_dialog(dialog, model, tokenizer): | |
| prompt = tokenizer.apply_chat_template( | |
| dialog, tokenize=False, add_generation_prompt=True | |
| ) | |
| tokenized_input_prompt_ids = tokenizer( | |
| prompt, return_tensors="pt" | |
| ).input_ids.to(model.device) | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_peak_memory_stats() | |
| with TorchTracemalloc() as tt: | |
| start_time = time.time() | |
| with torch.no_grad(): | |
| token_ids_for_each_answer = model.generate( | |
| tokenized_input_prompt_ids, | |
| max_new_tokens=512, | |
| temperature=0.7, | |
| do_sample=True, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.pad_token_id, | |
| ) | |
| torch.cuda.synchronize() | |
| end_time = time.time() | |
| response = token_ids_for_each_answer[0][ | |
| tokenized_input_prompt_ids.shape[-1] : | |
| ] | |
| cleaned_response = tokenizer.decode( | |
| response, | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=True, | |
| ) | |
| return cleaned_response | |
| model, tokenizer = load_model_and_tokenizer() | |
| def chatbot_interface(user_input, chat_history): | |
| dialog = [{"role": "user", "content": user_input}] | |
| response = process_dialog(dialog, model, tokenizer) | |
| chat_history.append((user_input, response)) | |
| return chat_history, chat_history | |
| def main(): | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot() | |
| user_input = gr.Textbox(placeholder="Type your message here...") | |
| clear = gr.Button("Clear") | |
| user_input.submit(chatbot_interface, [user_input, chatbot], [chatbot, chatbot]) | |
| clear.click(lambda: None, None, chatbot) | |
| demo.launch() | |
| if __name__ == "__main__": | |
| main() | |