Spaces:
Runtime error
Runtime error
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from argparse import ArgumentParser, Namespace | |
| from ..utils import logging | |
| from . import BaseTransformersCLICommand | |
| def convert_command_factory(args: Namespace): | |
| """ | |
| Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint. | |
| Returns: ServeCommand | |
| """ | |
| return ConvertCommand( | |
| args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name | |
| ) | |
| IMPORT_ERROR_MESSAGE = """ | |
| transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires | |
| TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. | |
| """ | |
| class ConvertCommand(BaseTransformersCLICommand): | |
| def register_subcommand(parser: ArgumentParser): | |
| """ | |
| Register this command to argparse so it's available for the transformer-cli | |
| Args: | |
| parser: Root parser to register command-specific arguments | |
| """ | |
| train_parser = parser.add_parser( | |
| "convert", | |
| help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.", | |
| ) | |
| train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.") | |
| train_parser.add_argument( | |
| "--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder." | |
| ) | |
| train_parser.add_argument( | |
| "--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output." | |
| ) | |
| train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.") | |
| train_parser.add_argument( | |
| "--finetuning_task_name", | |
| type=str, | |
| default=None, | |
| help="Optional fine-tuning task name if the TF model was a finetuned model.", | |
| ) | |
| train_parser.set_defaults(func=convert_command_factory) | |
| def __init__( | |
| self, | |
| model_type: str, | |
| tf_checkpoint: str, | |
| pytorch_dump_output: str, | |
| config: str, | |
| finetuning_task_name: str, | |
| *args, | |
| ): | |
| self._logger = logging.get_logger("transformers-cli/converting") | |
| self._logger.info(f"Loading model {model_type}") | |
| self._model_type = model_type | |
| self._tf_checkpoint = tf_checkpoint | |
| self._pytorch_dump_output = pytorch_dump_output | |
| self._config = config | |
| self._finetuning_task_name = finetuning_task_name | |
| def run(self): | |
| if self._model_type == "albert": | |
| try: | |
| from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( | |
| convert_tf_checkpoint_to_pytorch, | |
| ) | |
| except ImportError: | |
| raise ImportError(IMPORT_ERROR_MESSAGE) | |
| convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
| elif self._model_type == "bert": | |
| try: | |
| from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( | |
| convert_tf_checkpoint_to_pytorch, | |
| ) | |
| except ImportError: | |
| raise ImportError(IMPORT_ERROR_MESSAGE) | |
| convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
| elif self._model_type == "funnel": | |
| try: | |
| from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( | |
| convert_tf_checkpoint_to_pytorch, | |
| ) | |
| except ImportError: | |
| raise ImportError(IMPORT_ERROR_MESSAGE) | |
| convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
| elif self._model_type == "t5": | |
| try: | |
| from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch | |
| except ImportError: | |
| raise ImportError(IMPORT_ERROR_MESSAGE) | |
| convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
| elif self._model_type == "gpt": | |
| from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( | |
| convert_openai_checkpoint_to_pytorch, | |
| ) | |
| convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
| elif self._model_type == "gpt2": | |
| try: | |
| from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import ( | |
| convert_gpt2_checkpoint_to_pytorch, | |
| ) | |
| except ImportError: | |
| raise ImportError(IMPORT_ERROR_MESSAGE) | |
| convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
| elif self._model_type == "xlnet": | |
| try: | |
| from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( | |
| convert_xlnet_checkpoint_to_pytorch, | |
| ) | |
| except ImportError: | |
| raise ImportError(IMPORT_ERROR_MESSAGE) | |
| convert_xlnet_checkpoint_to_pytorch( | |
| self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name | |
| ) | |
| elif self._model_type == "xlm": | |
| from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( | |
| convert_xlm_checkpoint_to_pytorch, | |
| ) | |
| convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) | |
| elif self._model_type == "lxmert": | |
| from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( | |
| convert_lxmert_checkpoint_to_pytorch, | |
| ) | |
| convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) | |
| elif self._model_type == "rembert": | |
| from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( | |
| convert_rembert_tf_checkpoint_to_pytorch, | |
| ) | |
| convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
| else: | |
| raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, t5, xlnet, xlm, lxmert]") | |