Spaces:
Runtime error
Runtime error
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| from argparse import ArgumentParser, Namespace | |
| from ..data import SingleSentenceClassificationProcessor as Processor | |
| from ..pipelines import TextClassificationPipeline | |
| from ..utils import is_tf_available, is_torch_available, logging | |
| from . import BaseTransformersCLICommand | |
| if not is_tf_available() and not is_torch_available(): | |
| raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") | |
| # TF training parameters | |
| USE_XLA = False | |
| USE_AMP = False | |
| def train_command_factory(args: Namespace): | |
| """ | |
| Factory function used to instantiate training command from provided command line arguments. | |
| Returns: TrainCommand | |
| """ | |
| return TrainCommand(args) | |
| class TrainCommand(BaseTransformersCLICommand): | |
| def register_subcommand(parser: ArgumentParser): | |
| """ | |
| Register this command to argparse so it's available for the transformer-cli | |
| Args: | |
| parser: Root parser to register command-specific arguments | |
| """ | |
| train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.") | |
| train_parser.add_argument( | |
| "--train_data", | |
| type=str, | |
| required=True, | |
| help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.", | |
| ) | |
| train_parser.add_argument( | |
| "--column_label", type=int, default=0, help="Column of the dataset csv file with example labels." | |
| ) | |
| train_parser.add_argument( | |
| "--column_text", type=int, default=1, help="Column of the dataset csv file with example texts." | |
| ) | |
| train_parser.add_argument( | |
| "--column_id", type=int, default=2, help="Column of the dataset csv file with example ids." | |
| ) | |
| train_parser.add_argument( | |
| "--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)." | |
| ) | |
| train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.") | |
| train_parser.add_argument( | |
| "--validation_split", | |
| type=float, | |
| default=0.1, | |
| help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.", | |
| ) | |
| train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.") | |
| train_parser.add_argument( | |
| "--task", type=str, default="text_classification", help="Task to train the model on." | |
| ) | |
| train_parser.add_argument( | |
| "--model", type=str, default="google-bert/bert-base-uncased", help="Model's name or path to stored model." | |
| ) | |
| train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.") | |
| train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.") | |
| train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.") | |
| train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.") | |
| train_parser.set_defaults(func=train_command_factory) | |
| def __init__(self, args: Namespace): | |
| self.logger = logging.get_logger("transformers-cli/training") | |
| self.framework = "tf" if is_tf_available() else "torch" | |
| os.makedirs(args.output, exist_ok=True) | |
| self.output = args.output | |
| self.column_label = args.column_label | |
| self.column_text = args.column_text | |
| self.column_id = args.column_id | |
| self.logger.info(f"Loading {args.task} pipeline for {args.model}") | |
| if args.task == "text_classification": | |
| self.pipeline = TextClassificationPipeline.from_pretrained(args.model) | |
| elif args.task == "token_classification": | |
| raise NotImplementedError | |
| elif args.task == "question_answering": | |
| raise NotImplementedError | |
| self.logger.info(f"Loading dataset from {args.train_data}") | |
| self.train_dataset = Processor.create_from_csv( | |
| args.train_data, | |
| column_label=args.column_label, | |
| column_text=args.column_text, | |
| column_id=args.column_id, | |
| skip_first_row=args.skip_first_row, | |
| ) | |
| self.valid_dataset = None | |
| if args.validation_data: | |
| self.logger.info(f"Loading validation dataset from {args.validation_data}") | |
| self.valid_dataset = Processor.create_from_csv( | |
| args.validation_data, | |
| column_label=args.column_label, | |
| column_text=args.column_text, | |
| column_id=args.column_id, | |
| skip_first_row=args.skip_first_row, | |
| ) | |
| self.validation_split = args.validation_split | |
| self.train_batch_size = args.train_batch_size | |
| self.valid_batch_size = args.valid_batch_size | |
| self.learning_rate = args.learning_rate | |
| self.adam_epsilon = args.adam_epsilon | |
| def run(self): | |
| if self.framework == "tf": | |
| return self.run_tf() | |
| return self.run_torch() | |
| def run_torch(self): | |
| raise NotImplementedError | |
| def run_tf(self): | |
| self.pipeline.fit( | |
| self.train_dataset, | |
| validation_data=self.valid_dataset, | |
| validation_split=self.validation_split, | |
| learning_rate=self.learning_rate, | |
| adam_epsilon=self.adam_epsilon, | |
| train_batch_size=self.train_batch_size, | |
| valid_batch_size=self.valid_batch_size, | |
| ) | |
| # Save trained pipeline | |
| self.pipeline.save_pretrained(self.output) | |