Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| "AWQ (Activation aware Weight Quantization) integration file" | |
| from ..activations import ACT2FN | |
| from ..modeling_utils import PreTrainedModel | |
| from ..utils import is_auto_awq_available, is_torch_available | |
| from ..utils.quantization_config import ( | |
| AwqBackendPackingMethod, | |
| AwqConfig, | |
| AWQLinearVersion, | |
| ExllamaVersion, | |
| ) | |
| if is_torch_available(): | |
| import torch | |
| import torch.nn as nn | |
| AWQ_FUSED_MAPPINGS = { | |
| "mistral": { | |
| "attention": ["q_proj", "k_proj", "v_proj", "o_proj"], | |
| "mlp": ["gate_proj", "up_proj", "down_proj"], | |
| "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], | |
| "use_alibi": False, | |
| }, | |
| "mixtral": { | |
| "attention": ["q_proj", "k_proj", "v_proj", "o_proj"], | |
| "mlp": ["w1", "w3", "w2"], | |
| "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], | |
| "use_alibi": False, | |
| "rope_theta": 1000000.0, | |
| }, | |
| "llama": { | |
| "attention": ["q_proj", "k_proj", "v_proj", "o_proj"], | |
| "mlp": ["gate_proj", "up_proj", "down_proj"], | |
| "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], | |
| "use_alibi": False, | |
| }, | |
| "llava": { | |
| "attention": ["q_proj", "k_proj", "v_proj", "o_proj"], | |
| "mlp": ["gate_proj", "up_proj", "down_proj"], | |
| "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], | |
| "use_alibi": False, | |
| }, | |
| } | |
| def replace_with_awq_linear( | |
| model, | |
| modules_to_not_convert=None, | |
| quantization_config=None, | |
| current_key_name=None, | |
| has_been_replaced=False, | |
| ) -> bool: | |
| """ | |
| Public method that recursively replaces the Linear layers of the given model with AWQ quantized layers. | |
| `accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the | |
| conversion has been successfull or not. | |
| During the module replacement, we also infer the backend to use through the `quantization_config` object. | |
| Args: | |
| model (`torch.nn.Module`): | |
| The model to convert, can be any `torch.nn.Module` instance. | |
| quantization_config (`AwqConfig`): | |
| The quantization config object that contains the quantization parameters. | |
| modules_to_not_convert (`list`, *optional*): | |
| A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be | |
| converted. | |
| current_key_name (`list`, *optional*): | |
| A list that contains the current key name. This is used for recursion and should not be passed by the user. | |
| has_been_replaced (`bool`, *optional*): | |
| A boolean that indicates if the conversion has been successful or not. This is used for recursion and | |
| should not be passed by the user. | |
| """ | |
| if modules_to_not_convert is None: | |
| modules_to_not_convert = [] | |
| backend = quantization_config.backend | |
| if not is_auto_awq_available(): | |
| raise ValueError( | |
| "AWQ (either `autoawq` or `llmawq`) is not available. Please install it with `pip install autoawq` or check out the installation guide in https://github.com/mit-han-lab/llm-awq" | |
| ) | |
| if backend == AwqBackendPackingMethod.AUTOAWQ: | |
| if quantization_config.version == AWQLinearVersion.GEMM: | |
| from awq.modules.linear.gemm import WQLinear_GEMM | |
| target_cls = WQLinear_GEMM | |
| elif quantization_config.version == AWQLinearVersion.GEMV: | |
| from awq.modules.linear.gemv import WQLinear_GEMV | |
| target_cls = WQLinear_GEMV | |
| elif quantization_config.version == AWQLinearVersion.EXLLAMA: | |
| if quantization_config.exllama_config["version"] == ExllamaVersion.ONE: | |
| from awq.modules.linear.exllama import WQLinear_Exllama | |
| target_cls = WQLinear_Exllama | |
| elif quantization_config.exllama_config["version"] == ExllamaVersion.TWO: | |
| from awq.modules.linear.exllamav2 import WQLinear_ExllamaV2 | |
| target_cls = WQLinear_ExllamaV2 | |
| else: | |
| raise ValueError(f"Unrecognized Exllama version: {quantization_config.exllama_config['version']}") | |
| else: | |
| raise ValueError(f"Unrecognized AWQ version: {quantization_config.version}") | |
| else: | |
| from awq.quantize.qmodule import WQLinear | |
| target_cls = WQLinear | |
| for name, module in model.named_children(): | |
| if current_key_name is None: | |
| current_key_name = [] | |
| current_key_name.append(name) | |
| if isinstance(module, nn.Linear) and name not in modules_to_not_convert: | |
| # Check if the current key is not in the `modules_to_not_convert` | |
| if not any(key in ".".join(current_key_name) for key in modules_to_not_convert): | |
| in_features = module.in_features | |
| out_features = module.out_features | |
| model._modules[name] = target_cls( | |
| w_bit=quantization_config.bits, | |
| group_size=quantization_config.group_size, | |
| in_features=in_features, | |
| out_features=out_features, | |
| bias=module.bias is not None, | |
| dev=module.weight.device, | |
| ) | |
| has_been_replaced = True | |
| # Force requires grad to False to avoid unexpected errors | |
| model._modules[name].requires_grad_(False) | |
| if len(list(module.children())) > 0: | |
| _, has_been_replaced = replace_with_awq_linear( | |
| module, | |
| modules_to_not_convert=modules_to_not_convert, | |
| current_key_name=current_key_name, | |
| quantization_config=quantization_config, | |
| has_been_replaced=has_been_replaced, | |
| ) | |
| # Remove the last key for recursion | |
| current_key_name.pop(-1) | |
| return model, has_been_replaced | |
| def get_modules_to_fuse(model, quantization_config): | |
| """ | |
| Returns the fusing mapping given the quantization config and the model | |
| Args: | |
| model (`~PreTrainedModel`): | |
| The model to fuse - note this model should have been converted into AWQ format beforehand. | |
| quantization_config (`~transformers.quantization_config.AWQConfig`): | |
| The quantization configuration to use. | |
| """ | |
| if not isinstance(model, PreTrainedModel): | |
| raise ValueError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}") | |
| # Always default to `quantization_config.modules_to_fuse` | |
| if quantization_config.modules_to_fuse is not None: | |
| current_fused_mapping = quantization_config.modules_to_fuse | |
| current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len | |
| elif model.config.model_type in AWQ_FUSED_MAPPINGS: | |
| current_fused_mapping = AWQ_FUSED_MAPPINGS[model.config.model_type] | |
| # Properly deal with the case where we have a multi-modal model as well (e.g. Llava) | |
| if not hasattr(model.config, "text_config"): | |
| config = model.config | |
| else: | |
| config = model.config.text_config | |
| # Handle hidden_size, num_attention_heads, num_key_value_heads on our own. | |
| hidden_size = config.hidden_size | |
| num_attention_heads = config.num_attention_heads | |
| num_key_value_heads = getattr(config, "num_key_value_heads", num_attention_heads) | |
| # Fill `current_fused_mapping` with the expected values | |
| current_fused_mapping["hidden_size"] = hidden_size | |
| current_fused_mapping["num_attention_heads"] = num_attention_heads | |
| current_fused_mapping["num_key_value_heads"] = num_key_value_heads | |
| current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len | |
| else: | |
| raise ValueError( | |
| "Fusing mapping not found either on the quantization config or the supported `AWQ_FUSED_MAPPINGS`. Please pass a `fused_mapping` argument" | |
| " in the `quantization_config` or raise an issue on transformers https://github.com/huggingface/transformers to add its support." | |
| ) | |
| return current_fused_mapping | |
| def fuse_awq_modules(model, quantization_config): | |
| """ | |
| Optionally fuse some modules in the model to speedup inference. | |
| Args: | |
| model (`~PreTrainedModel`): | |
| The model to fuse - note this model should have been converted into AWQ format beforehand. | |
| quantization_config (`Union[AwqConfig, dict]`): | |
| The quantization configuration to use. | |
| """ | |
| # We need to convert it from dict in order to get an AwqConfig object | |
| # otherwise the fields `backend` etc. will not be available | |
| # https://github.com/huggingface/transformers/pull/27411#discussion_r1414044495 | |
| if isinstance(quantization_config, dict): | |
| quantization_config = AwqConfig.from_dict(quantization_config) | |
| backend = quantization_config.backend | |
| modules_to_fuse = get_modules_to_fuse(model, quantization_config) | |
| modules_to_not_convert = getattr(quantization_config, "modules_to_not_convert", None) | |
| if backend == AwqBackendPackingMethod.AUTOAWQ: | |
| from awq.modules.fused.attn import QuantAttentionFused | |
| from awq.modules.fused.mlp import QuantFusedMLP | |
| from awq.modules.fused.norm import FasterTransformerRMSNorm | |
| else: | |
| raise ValueError("Fusing is only supported for the AutoAWQ backend") | |
| fused_attention_modules = [] | |
| for name, module in model.named_modules(): | |
| if modules_to_not_convert is not None: | |
| if any(module_name_to_not_convert in name for module_name_to_not_convert in modules_to_not_convert): | |
| continue | |
| # Replace layer norms | |
| _fuse_awq_layernorm(modules_to_fuse["layernorm"], module, FasterTransformerRMSNorm) | |
| # Replace MLP layers | |
| _fuse_awq_mlp(model, name, modules_to_fuse["mlp"], module, QuantFusedMLP) | |
| # Replace attention layers | |
| attention_has_been_fused = _fuse_awq_attention_layers( | |
| model, module, modules_to_fuse, name, QuantAttentionFused | |
| ) | |
| if attention_has_been_fused: | |
| fused_attention_modules.append(name.split(".")[0]) | |
| # For AWQ fused + Llama we need to set `config._attn_implementation` = "custom" to avoid unexpected behavior and pass | |
| # `None` attention mask to the fused attention modules as now the attention mask is dropped by our models and dealt | |
| # by the `AttentionMaskConverter` module. | |
| if len(fused_attention_modules) > 0: | |
| for module_name, module in model.named_modules(): | |
| if any( | |
| module_name in fused_attention_modules for fused_attention_parent_module in fused_attention_modules | |
| ): | |
| if hasattr(module, "config") and hasattr(module.config, "_attn_implementation"): | |
| module.config._attn_implementation = "custom" | |
| return model | |
| def _fuse_awq_layernorm(fuse_module_names, module, target_cls): | |
| """ | |
| Fuse the LayerNorm layers into a target class using autoawq | |
| Args: | |
| fuse_module_names (`List[str]`): | |
| The list of module names to fuse | |
| module (`nn.Module`): | |
| The pytorch parent module that has layernorm modules to fuse | |
| target_cls (`~autoawq.FasterTransformerRMSNorm`): | |
| The `FasterTransformerRMSNorm` class as it only supports that class | |
| for now. | |
| """ | |
| for module_name in fuse_module_names: | |
| if hasattr(module, module_name): | |
| old_module = getattr(module, module_name) | |
| module._modules[module_name] = target_cls( | |
| old_module.weight, | |
| old_module.variance_epsilon, | |
| ).to(old_module.weight.device) | |
| del old_module | |
| def _fuse_awq_mlp(model, current_module_name, fuse_module_names, module, target_cls): | |
| """ | |
| Fuse the MLP layers into a target class using autoawq | |
| Args: | |
| model (`~PreTrainedModel`): | |
| The input pretrained model | |
| current_module_name (`str`): | |
| The current submodule name | |
| fuse_module_names (`List[str]`): | |
| The list of module names to fuse. For the MLP layers it has to be an array | |
| of length 3 that consists of the 3 MLP layers in the order (gate (dense layer post-attention) / up / down layers) | |
| module (`nn.Module`): | |
| The pytorch parent module that has layernorm modules to fuse | |
| target_cls (`~autoawq.QuantFusedMLP`): | |
| The `QuantFusedMLP` class as it only supports that class | |
| for now. | |
| """ | |
| if len(fuse_module_names) == 0: | |
| return | |
| if hasattr(module, fuse_module_names[0]): | |
| gate_proj = getattr(module, fuse_module_names[0]) | |
| up_proj = getattr(module, fuse_module_names[1]) | |
| down_proj = getattr(module, fuse_module_names[2]) | |
| previous_device = gate_proj.qweight.device | |
| # Deal also with the case model has `text_config` attribute | |
| hidden_act = ( | |
| model.config.hidden_act | |
| if not hasattr(model.config, "text_config") | |
| else model.config.text_config.hidden_act | |
| ) | |
| activation_fn = ACT2FN[hidden_act] | |
| new_module = target_cls(gate_proj, down_proj, up_proj, activation_fn) | |
| parent_name, child_name = current_module_name.rsplit(".", 1) | |
| parent = model.get_submodule(parent_name) | |
| setattr(parent, child_name, new_module.to(previous_device)) | |
| del gate_proj, up_proj, down_proj | |
| def _fuse_awq_attention_layers(model, module, modules_to_fuse, current_module_name, target_cls): | |
| """ | |
| Fuse the Attention layers into a target class using autoawq | |
| Args: | |
| model (`~PreTrainedModel`): | |
| The input pretrained model | |
| module (`nn.Module`): | |
| The pytorch parent module that has layernorm modules to fuse | |
| modules_to_fuse (`List[str]`): | |
| The module fusing mapping. The dictionary has to contain a field `attention` with attention module names | |
| in the correct order: q, k, v, o layer | |
| current_module_name (`str`): | |
| The current submodule name | |
| target_cls (`~autoawq.QuantAttentionFused`): | |
| The `QuantAttentionFused` class as it only supports that class | |
| for now. | |
| """ | |
| from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV | |
| module_has_been_fused = False | |
| if len(modules_to_fuse["attention"]) == 0: | |
| return module_has_been_fused | |
| if hasattr(module, modules_to_fuse["attention"][0]): | |
| # First, we pack the QKV layers together | |
| q_proj = getattr(module, modules_to_fuse["attention"][0]) | |
| if isinstance(q_proj, WQLinear_GEMV): | |
| linear_target_cls = WQLinear_GEMV | |
| cat_dim = 0 | |
| elif isinstance(q_proj, WQLinear_GEMM): | |
| linear_target_cls = WQLinear_GEMM | |
| cat_dim = 1 | |
| else: | |
| raise ValueError("Unsupported q_proj type: {type(q_proj)}") | |
| previous_device = q_proj.qweight.device | |
| k_proj = getattr(module, modules_to_fuse["attention"][1]) | |
| v_proj = getattr(module, modules_to_fuse["attention"][2]) | |
| o_proj = getattr(module, modules_to_fuse["attention"][3]) | |
| bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None | |
| qkv_layer = linear_target_cls( | |
| q_proj.w_bit, | |
| q_proj.group_size, | |
| q_proj.in_features, | |
| q_proj.out_features + k_proj.out_features + v_proj.out_features, | |
| q_proj.bias is not None, | |
| next(iter(module.state_dict().values())).device, | |
| ) | |
| qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=cat_dim) | |
| qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=cat_dim) | |
| qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=cat_dim) | |
| if isinstance(qkv_layer, WQLinear_GEMV): | |
| qkv_layer.split_k_iters = q_proj.split_k_iters | |
| qkv_layer.bias = bias | |
| fused_attention_layer = target_cls( | |
| modules_to_fuse["hidden_size"], | |
| modules_to_fuse["num_attention_heads"], | |
| modules_to_fuse["num_key_value_heads"], | |
| qkv_layer, | |
| o_proj, | |
| previous_device, | |
| modules_to_fuse["max_seq_len"], | |
| use_alibi=modules_to_fuse["use_alibi"], | |
| # The default value in autoawq is set to 10000.0 | |
| rope_theta=modules_to_fuse.get("rope_theta", 10000.0), | |
| ) | |
| fused_attention_layer.is_hf_transformers = True | |
| parent_name, child_name = current_module_name.rsplit(".", 1) | |
| parent = model.get_submodule(parent_name) | |
| setattr(parent, child_name, fused_attention_layer.to(previous_device)) | |
| del q_proj, k_proj, v_proj, o_proj | |
| module_has_been_fused = True | |
| return module_has_been_fused | |
| def post_init_awq_exllama_modules(model, exllama_config): | |
| """ | |
| Runs post init for Exllama layers which performs: | |
| - Weights unpacking, reordering and repacking | |
| - Devices scratch space allocation | |
| """ | |
| if exllama_config["version"] == ExllamaVersion.ONE: | |
| from awq.modules.linear.exllama import exllama_post_init | |
| model = exllama_post_init(model) | |
| elif exllama_config["version"] == ExllamaVersion.TWO: | |
| from awq.modules.linear.exllamav2 import exllamav2_post_init | |
| model = exllamav2_post_init( | |
| model, | |
| max_input_len=exllama_config["max_input_len"], | |
| max_batch_size=exllama_config["max_batch_size"], | |
| ) | |
| else: | |
| raise ValueError(f"Unrecognized Exllama version: {exllama_config['version']}") | |
| return model | |