Spaces:
Runtime error
Runtime error
| # Copyright 2022 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Hub utilities: utilities related to download and cache models | |
| """ | |
| import json | |
| import os | |
| import re | |
| import shutil | |
| import sys | |
| import tempfile | |
| import traceback | |
| import warnings | |
| from concurrent import futures | |
| from pathlib import Path | |
| from typing import Dict, List, Optional, Tuple, Union | |
| from urllib.parse import urlparse | |
| from uuid import uuid4 | |
| import huggingface_hub | |
| import requests | |
| from huggingface_hub import ( | |
| _CACHED_NO_EXIST, | |
| CommitOperationAdd, | |
| ModelCard, | |
| ModelCardData, | |
| constants, | |
| create_branch, | |
| create_commit, | |
| create_repo, | |
| get_hf_file_metadata, | |
| hf_hub_download, | |
| hf_hub_url, | |
| try_to_load_from_cache, | |
| ) | |
| from huggingface_hub.file_download import REGEX_COMMIT_HASH, http_get | |
| from huggingface_hub.utils import ( | |
| EntryNotFoundError, | |
| GatedRepoError, | |
| HFValidationError, | |
| LocalEntryNotFoundError, | |
| RepositoryNotFoundError, | |
| RevisionNotFoundError, | |
| build_hf_headers, | |
| hf_raise_for_status, | |
| send_telemetry, | |
| ) | |
| from huggingface_hub.utils._deprecation import _deprecate_method | |
| from requests.exceptions import HTTPError | |
| from . import __version__, logging | |
| from .generic import working_or_temp_dir | |
| from .import_utils import ( | |
| ENV_VARS_TRUE_VALUES, | |
| _tf_version, | |
| _torch_version, | |
| is_tf_available, | |
| is_torch_available, | |
| is_training_run_on_sagemaker, | |
| ) | |
| from .logging import tqdm | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| _is_offline_mode = True if os.environ.get("TRANSFORMERS_OFFLINE", "0").upper() in ENV_VARS_TRUE_VALUES else False | |
| def is_offline_mode(): | |
| return _is_offline_mode | |
| torch_cache_home = os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) | |
| default_cache_path = constants.default_cache_path | |
| old_default_cache_path = os.path.join(torch_cache_home, "transformers") | |
| # Determine default cache directory. Lots of legacy environment variables to ensure backward compatibility. | |
| # The best way to set the cache path is with the environment variable HF_HOME. For more details, checkout this | |
| # documentation page: https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables. | |
| # | |
| # In code, use `HF_HUB_CACHE` as the default cache path. This variable is set by the library and is guaranteed | |
| # to be set to the right value. | |
| # | |
| # TODO: clean this for v5? | |
| PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", constants.HF_HUB_CACHE) | |
| PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) | |
| TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) | |
| # Onetime move from the old location to the new one if no ENV variable has been set. | |
| if ( | |
| os.path.isdir(old_default_cache_path) | |
| and not os.path.isdir(constants.HF_HUB_CACHE) | |
| and "PYTORCH_PRETRAINED_BERT_CACHE" not in os.environ | |
| and "PYTORCH_TRANSFORMERS_CACHE" not in os.environ | |
| and "TRANSFORMERS_CACHE" not in os.environ | |
| ): | |
| logger.warning( | |
| "In Transformers v4.22.0, the default path to cache downloaded models changed from" | |
| " '~/.cache/torch/transformers' to '~/.cache/huggingface/hub'. Since you don't seem to have" | |
| " overridden and '~/.cache/torch/transformers' is a directory that exists, we're moving it to" | |
| " '~/.cache/huggingface/hub' to avoid redownloading models you have already in the cache. You should" | |
| " only see this message once." | |
| ) | |
| shutil.move(old_default_cache_path, constants.HF_HUB_CACHE) | |
| HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(constants.HF_HOME, "modules")) | |
| TRANSFORMERS_DYNAMIC_MODULE_NAME = "transformers_modules" | |
| SESSION_ID = uuid4().hex | |
| # Add deprecation warning for old environment variables. | |
| for key in ("PYTORCH_PRETRAINED_BERT_CACHE", "PYTORCH_TRANSFORMERS_CACHE", "TRANSFORMERS_CACHE"): | |
| if os.getenv(key) is not None: | |
| warnings.warn( | |
| f"Using `{key}` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.", | |
| FutureWarning, | |
| ) | |
| S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert" | |
| CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co" | |
| _staging_mode = os.environ.get("HUGGINGFACE_CO_STAGING", "NO").upper() in ENV_VARS_TRUE_VALUES | |
| _default_endpoint = "https://hub-ci.huggingface.co" if _staging_mode else "https://huggingface.co" | |
| HUGGINGFACE_CO_RESOLVE_ENDPOINT = _default_endpoint | |
| if os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) is not None: | |
| warnings.warn( | |
| "Using the environment variable `HUGGINGFACE_CO_RESOLVE_ENDPOINT` is deprecated and will be removed in " | |
| "Transformers v5. Use `HF_ENDPOINT` instead.", | |
| FutureWarning, | |
| ) | |
| HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) | |
| HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", HUGGINGFACE_CO_RESOLVE_ENDPOINT) | |
| HUGGINGFACE_CO_PREFIX = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/{model_id}/resolve/{revision}/{filename}" | |
| HUGGINGFACE_CO_EXAMPLES_TELEMETRY = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/examples" | |
| def _get_cache_file_to_return( | |
| path_or_repo_id: str, full_filename: str, cache_dir: Union[str, Path, None] = None, revision: Optional[str] = None | |
| ): | |
| # We try to see if we have a cached version (not up to date): | |
| resolved_file = try_to_load_from_cache(path_or_repo_id, full_filename, cache_dir=cache_dir, revision=revision) | |
| if resolved_file is not None and resolved_file != _CACHED_NO_EXIST: | |
| return resolved_file | |
| return None | |
| def is_remote_url(url_or_filename): | |
| parsed = urlparse(url_or_filename) | |
| return parsed.scheme in ("http", "https") | |
| # TODO: remove this once fully deprecated | |
| # TODO? remove from './examples/research_projects/lxmert/utils.py' as well | |
| # TODO? remove from './examples/research_projects/visual_bert/utils.py' as well | |
| def get_cached_models(cache_dir: Union[str, Path] = None) -> List[Tuple]: | |
| """ | |
| Returns a list of tuples representing model binaries that are cached locally. Each tuple has shape `(model_url, | |
| etag, size_MB)`. Filenames in `cache_dir` are use to get the metadata for each model, only urls ending with *.bin* | |
| are added. | |
| Args: | |
| cache_dir (`Union[str, Path]`, *optional*): | |
| The cache directory to search for models within. Will default to the transformers cache if unset. | |
| Returns: | |
| List[Tuple]: List of tuples each with shape `(model_url, etag, size_MB)` | |
| """ | |
| if cache_dir is None: | |
| cache_dir = TRANSFORMERS_CACHE | |
| elif isinstance(cache_dir, Path): | |
| cache_dir = str(cache_dir) | |
| if not os.path.isdir(cache_dir): | |
| return [] | |
| cached_models = [] | |
| for file in os.listdir(cache_dir): | |
| if file.endswith(".json"): | |
| meta_path = os.path.join(cache_dir, file) | |
| with open(meta_path, encoding="utf-8") as meta_file: | |
| metadata = json.load(meta_file) | |
| url = metadata["url"] | |
| etag = metadata["etag"] | |
| if url.endswith(".bin"): | |
| size_MB = os.path.getsize(meta_path.strip(".json")) / 1e6 | |
| cached_models.append((url, etag, size_MB)) | |
| return cached_models | |
| def define_sagemaker_information(): | |
| try: | |
| instance_data = requests.get(os.environ["ECS_CONTAINER_METADATA_URI"]).json() | |
| dlc_container_used = instance_data["Image"] | |
| dlc_tag = instance_data["Image"].split(":")[1] | |
| except Exception: | |
| dlc_container_used = None | |
| dlc_tag = None | |
| sagemaker_params = json.loads(os.getenv("SM_FRAMEWORK_PARAMS", "{}")) | |
| runs_distributed_training = True if "sagemaker_distributed_dataparallel_enabled" in sagemaker_params else False | |
| account_id = os.getenv("TRAINING_JOB_ARN").split(":")[4] if "TRAINING_JOB_ARN" in os.environ else None | |
| sagemaker_object = { | |
| "sm_framework": os.getenv("SM_FRAMEWORK_MODULE", None), | |
| "sm_region": os.getenv("AWS_REGION", None), | |
| "sm_number_gpu": os.getenv("SM_NUM_GPUS", 0), | |
| "sm_number_cpu": os.getenv("SM_NUM_CPUS", 0), | |
| "sm_distributed_training": runs_distributed_training, | |
| "sm_deep_learning_container": dlc_container_used, | |
| "sm_deep_learning_container_tag": dlc_tag, | |
| "sm_account_id": account_id, | |
| } | |
| return sagemaker_object | |
| def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str: | |
| """ | |
| Formats a user-agent string with basic info about a request. | |
| """ | |
| ua = f"transformers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" | |
| if is_torch_available(): | |
| ua += f"; torch/{_torch_version}" | |
| if is_tf_available(): | |
| ua += f"; tensorflow/{_tf_version}" | |
| if constants.HF_HUB_DISABLE_TELEMETRY: | |
| return ua + "; telemetry/off" | |
| if is_training_run_on_sagemaker(): | |
| ua += "; " + "; ".join(f"{k}/{v}" for k, v in define_sagemaker_information().items()) | |
| # CI will set this value to True | |
| if os.environ.get("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: | |
| ua += "; is_ci/true" | |
| if isinstance(user_agent, dict): | |
| ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) | |
| elif isinstance(user_agent, str): | |
| ua += "; " + user_agent | |
| return ua | |
| def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str]) -> Optional[str]: | |
| """ | |
| Extracts the commit hash from a resolved filename toward a cache file. | |
| """ | |
| if resolved_file is None or commit_hash is not None: | |
| return commit_hash | |
| resolved_file = str(Path(resolved_file).as_posix()) | |
| search = re.search(r"snapshots/([^/]+)/", resolved_file) | |
| if search is None: | |
| return None | |
| commit_hash = search.groups()[0] | |
| return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None | |
| def cached_file( | |
| path_or_repo_id: Union[str, os.PathLike], | |
| filename: str, | |
| cache_dir: Optional[Union[str, os.PathLike]] = None, | |
| force_download: bool = False, | |
| resume_download: bool = False, | |
| proxies: Optional[Dict[str, str]] = None, | |
| token: Optional[Union[bool, str]] = None, | |
| revision: Optional[str] = None, | |
| local_files_only: bool = False, | |
| subfolder: str = "", | |
| repo_type: Optional[str] = None, | |
| user_agent: Optional[Union[str, Dict[str, str]]] = None, | |
| _raise_exceptions_for_gated_repo: bool = True, | |
| _raise_exceptions_for_missing_entries: bool = True, | |
| _raise_exceptions_for_connection_errors: bool = True, | |
| _commit_hash: Optional[str] = None, | |
| **deprecated_kwargs, | |
| ) -> Optional[str]: | |
| """ | |
| Tries to locate a file in a local folder and repo, downloads and cache it if necessary. | |
| Args: | |
| path_or_repo_id (`str` or `os.PathLike`): | |
| This can be either: | |
| - a string, the *model id* of a model repo on huggingface.co. | |
| - a path to a *directory* potentially containing the file. | |
| filename (`str`): | |
| The name of the file to locate in `path_or_repo`. | |
| cache_dir (`str` or `os.PathLike`, *optional*): | |
| Path to a directory in which a downloaded pretrained model configuration should be cached if the standard | |
| cache should not be used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force to (re-)download the configuration files and override the cached versions if they | |
| exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
| when running `huggingface-cli login` (stored in `~/.huggingface`). | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
| identifier allowed by git. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| If `True`, will only try to load the tokenizer configuration from local files. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can | |
| specify the folder name here. | |
| repo_type (`str`, *optional*): | |
| Specify the repo type (useful when downloading from a space for instance). | |
| <Tip> | |
| Passing `token=True` is required when you want to use a private model. | |
| </Tip> | |
| Returns: | |
| `Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo). | |
| Examples: | |
| ```python | |
| # Download a model weight from the Hub and cache it. | |
| model_weights_file = cached_file("google-bert/bert-base-uncased", "pytorch_model.bin") | |
| ``` | |
| """ | |
| use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
| if use_auth_token is not None: | |
| warnings.warn( | |
| "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", | |
| FutureWarning, | |
| ) | |
| if token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| token = use_auth_token | |
| # Private arguments | |
| # _raise_exceptions_for_gated_repo: if False, do not raise an exception for gated repo error but return | |
| # None. | |
| # _raise_exceptions_for_missing_entries: if False, do not raise an exception for missing entries but return | |
| # None. | |
| # _raise_exceptions_for_connection_errors: if False, do not raise an exception for connection errors but return | |
| # None. | |
| # _commit_hash: passed when we are chaining several calls to various files (e.g. when loading a tokenizer or | |
| # a pipeline). If files are cached for this commit hash, avoid calls to head and get from the cache. | |
| if is_offline_mode() and not local_files_only: | |
| logger.info("Offline mode: forcing local_files_only=True") | |
| local_files_only = True | |
| if subfolder is None: | |
| subfolder = "" | |
| path_or_repo_id = str(path_or_repo_id) | |
| full_filename = os.path.join(subfolder, filename) | |
| if os.path.isdir(path_or_repo_id): | |
| resolved_file = os.path.join(os.path.join(path_or_repo_id, subfolder), filename) | |
| if not os.path.isfile(resolved_file): | |
| if _raise_exceptions_for_missing_entries: | |
| raise EnvironmentError( | |
| f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout " | |
| f"'https://huggingface.co/{path_or_repo_id}/tree/{revision}' for available files." | |
| ) | |
| else: | |
| return None | |
| return resolved_file | |
| if cache_dir is None: | |
| cache_dir = TRANSFORMERS_CACHE | |
| if isinstance(cache_dir, Path): | |
| cache_dir = str(cache_dir) | |
| if _commit_hash is not None and not force_download: | |
| # If the file is cached under that commit hash, we return it directly. | |
| resolved_file = try_to_load_from_cache( | |
| path_or_repo_id, full_filename, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type | |
| ) | |
| if resolved_file is not None: | |
| if resolved_file is not _CACHED_NO_EXIST: | |
| return resolved_file | |
| elif not _raise_exceptions_for_missing_entries: | |
| return None | |
| else: | |
| raise EnvironmentError(f"Could not locate {full_filename} inside {path_or_repo_id}.") | |
| user_agent = http_user_agent(user_agent) | |
| try: | |
| # Load from URL or cache if already cached | |
| resolved_file = hf_hub_download( | |
| path_or_repo_id, | |
| filename, | |
| subfolder=None if len(subfolder) == 0 else subfolder, | |
| repo_type=repo_type, | |
| revision=revision, | |
| cache_dir=cache_dir, | |
| user_agent=user_agent, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| token=token, | |
| local_files_only=local_files_only, | |
| ) | |
| except GatedRepoError as e: | |
| resolved_file = _get_cache_file_to_return(path_or_repo_id, full_filename, cache_dir, revision) | |
| if resolved_file is not None or not _raise_exceptions_for_gated_repo: | |
| return resolved_file | |
| raise EnvironmentError( | |
| "You are trying to access a gated repo.\nMake sure to have access to it at " | |
| f"https://huggingface.co/{path_or_repo_id}.\n{str(e)}" | |
| ) from e | |
| except RepositoryNotFoundError as e: | |
| raise EnvironmentError( | |
| f"{path_or_repo_id} is not a local folder and is not a valid model identifier " | |
| "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token " | |
| "having permission to this repo either by logging in with `huggingface-cli login` or by passing " | |
| "`token=<your_token>`" | |
| ) from e | |
| except RevisionNotFoundError as e: | |
| raise EnvironmentError( | |
| f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists " | |
| "for this model name. Check the model page at " | |
| f"'https://huggingface.co/{path_or_repo_id}' for available revisions." | |
| ) from e | |
| except LocalEntryNotFoundError as e: | |
| resolved_file = _get_cache_file_to_return(path_or_repo_id, full_filename, cache_dir, revision) | |
| if ( | |
| resolved_file is not None | |
| or not _raise_exceptions_for_missing_entries | |
| or not _raise_exceptions_for_connection_errors | |
| ): | |
| return resolved_file | |
| raise EnvironmentError( | |
| f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this file, couldn't find it in the" | |
| f" cached files and it looks like {path_or_repo_id} is not the path to a directory containing a file named" | |
| f" {full_filename}.\nCheckout your internet connection or see how to run the library in offline mode at" | |
| " 'https://huggingface.co/docs/transformers/installation#offline-mode'." | |
| ) from e | |
| except EntryNotFoundError as e: | |
| if not _raise_exceptions_for_missing_entries: | |
| return None | |
| if revision is None: | |
| revision = "main" | |
| raise EnvironmentError( | |
| f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout " | |
| f"'https://huggingface.co/{path_or_repo_id}/tree/{revision}' for available files." | |
| ) from e | |
| except HTTPError as err: | |
| resolved_file = _get_cache_file_to_return(path_or_repo_id, full_filename, cache_dir, revision) | |
| if resolved_file is not None or not _raise_exceptions_for_connection_errors: | |
| return resolved_file | |
| raise EnvironmentError(f"There was a specific connection error when trying to load {path_or_repo_id}:\n{err}") | |
| except HFValidationError as e: | |
| raise EnvironmentError( | |
| f"Incorrect path_or_model_id: '{path_or_repo_id}'. Please provide either the path to a local folder or the repo_id of a model on the Hub." | |
| ) from e | |
| return resolved_file | |
| # TODO: deprecate `get_file_from_repo` or document it differently? | |
| # Docstring is exactly the same as `cached_repo` but behavior is slightly different. If file is missing or if | |
| # there is a connection error, `cached_repo` will return None while `get_file_from_repo` will raise an error. | |
| # IMO we should keep only 1 method and have a single `raise_error` argument (to be discussed). | |
| def get_file_from_repo( | |
| path_or_repo: Union[str, os.PathLike], | |
| filename: str, | |
| cache_dir: Optional[Union[str, os.PathLike]] = None, | |
| force_download: bool = False, | |
| resume_download: bool = False, | |
| proxies: Optional[Dict[str, str]] = None, | |
| token: Optional[Union[bool, str]] = None, | |
| revision: Optional[str] = None, | |
| local_files_only: bool = False, | |
| subfolder: str = "", | |
| **deprecated_kwargs, | |
| ): | |
| """ | |
| Tries to locate a file in a local folder and repo, downloads and cache it if necessary. | |
| Args: | |
| path_or_repo (`str` or `os.PathLike`): | |
| This can be either: | |
| - a string, the *model id* of a model repo on huggingface.co. | |
| - a path to a *directory* potentially containing the file. | |
| filename (`str`): | |
| The name of the file to locate in `path_or_repo`. | |
| cache_dir (`str` or `os.PathLike`, *optional*): | |
| Path to a directory in which a downloaded pretrained model configuration should be cached if the standard | |
| cache should not be used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force to (re-)download the configuration files and override the cached versions if they | |
| exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
| when running `huggingface-cli login` (stored in `~/.huggingface`). | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
| identifier allowed by git. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| If `True`, will only try to load the tokenizer configuration from local files. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can | |
| specify the folder name here. | |
| <Tip> | |
| Passing `token=True` is required when you want to use a private model. | |
| </Tip> | |
| Returns: | |
| `Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo) or `None` if the | |
| file does not exist. | |
| Examples: | |
| ```python | |
| # Download a tokenizer configuration from huggingface.co and cache. | |
| tokenizer_config = get_file_from_repo("google-bert/bert-base-uncased", "tokenizer_config.json") | |
| # This model does not have a tokenizer config so the result will be None. | |
| tokenizer_config = get_file_from_repo("FacebookAI/xlm-roberta-base", "tokenizer_config.json") | |
| ``` | |
| """ | |
| use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
| if use_auth_token is not None: | |
| warnings.warn( | |
| "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", | |
| FutureWarning, | |
| ) | |
| if token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| token = use_auth_token | |
| return cached_file( | |
| path_or_repo_id=path_or_repo, | |
| filename=filename, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| local_files_only=local_files_only, | |
| subfolder=subfolder, | |
| _raise_exceptions_for_gated_repo=False, | |
| _raise_exceptions_for_missing_entries=False, | |
| _raise_exceptions_for_connection_errors=False, | |
| ) | |
| def download_url(url, proxies=None): | |
| """ | |
| Downloads a given url in a temporary file. This function is not safe to use in multiple processes. Its only use is | |
| for deprecated behavior allowing to download config/models with a single url instead of using the Hub. | |
| Args: | |
| url (`str`): The url of the file to download. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
| Returns: | |
| `str`: The location of the temporary file where the url was downloaded. | |
| """ | |
| warnings.warn( | |
| f"Using `from_pretrained` with the url of a file (here {url}) is deprecated and won't be possible anymore in" | |
| " v5 of Transformers. You should host your file on the Hub (hf.co) instead and use the repository ID. Note" | |
| " that this is not compatible with the caching system (your file will be downloaded at each execution) or" | |
| " multiple processes (each process will download the file in a different temporary file).", | |
| FutureWarning, | |
| ) | |
| tmp_fd, tmp_file = tempfile.mkstemp() | |
| with os.fdopen(tmp_fd, "wb") as f: | |
| http_get(url, f, proxies=proxies) | |
| return tmp_file | |
| def has_file( | |
| path_or_repo: Union[str, os.PathLike], | |
| filename: str, | |
| revision: Optional[str] = None, | |
| proxies: Optional[Dict[str, str]] = None, | |
| token: Optional[Union[bool, str]] = None, | |
| **deprecated_kwargs, | |
| ): | |
| """ | |
| Checks if a repo contains a given file without downloading it. Works for remote repos and local folders. | |
| <Tip warning={false}> | |
| This function will raise an error if the repository `path_or_repo` is not valid or if `revision` does not exist for | |
| this repo, but will return False for regular connection errors. | |
| </Tip> | |
| """ | |
| use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
| if use_auth_token is not None: | |
| warnings.warn( | |
| "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", | |
| FutureWarning, | |
| ) | |
| if token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| token = use_auth_token | |
| if os.path.isdir(path_or_repo): | |
| return os.path.isfile(os.path.join(path_or_repo, filename)) | |
| url = hf_hub_url(path_or_repo, filename=filename, revision=revision) | |
| headers = build_hf_headers(token=token, user_agent=http_user_agent()) | |
| r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=10) | |
| try: | |
| hf_raise_for_status(r) | |
| return True | |
| except GatedRepoError as e: | |
| logger.error(e) | |
| raise EnvironmentError( | |
| f"{path_or_repo} is a gated repository. Make sure to request access at " | |
| f"https://huggingface.co/{path_or_repo} and pass a token having permission to this repo either by " | |
| "logging in with `huggingface-cli login` or by passing `token=<your_token>`." | |
| ) from e | |
| except RepositoryNotFoundError as e: | |
| logger.error(e) | |
| raise EnvironmentError(f"{path_or_repo} is not a local folder or a valid repository name on 'https://hf.co'.") | |
| except RevisionNotFoundError as e: | |
| logger.error(e) | |
| raise EnvironmentError( | |
| f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this " | |
| f"model name. Check the model page at 'https://huggingface.co/{path_or_repo}' for available revisions." | |
| ) | |
| except requests.HTTPError: | |
| # We return false for EntryNotFoundError (logical) as well as any connection error. | |
| return False | |
| class PushToHubMixin: | |
| """ | |
| A Mixin containing the functionality to push a model or tokenizer to the hub. | |
| """ | |
| def _create_repo( | |
| self, | |
| repo_id: str, | |
| private: Optional[bool] = None, | |
| token: Optional[Union[bool, str]] = None, | |
| repo_url: Optional[str] = None, | |
| organization: Optional[str] = None, | |
| ) -> str: | |
| """ | |
| Create the repo if needed, cleans up repo_id with deprecated kwargs `repo_url` and `organization`, retrieves | |
| the token. | |
| """ | |
| if repo_url is not None: | |
| warnings.warn( | |
| "The `repo_url` argument is deprecated and will be removed in v5 of Transformers. Use `repo_id` " | |
| "instead." | |
| ) | |
| if repo_id is not None: | |
| raise ValueError( | |
| "`repo_id` and `repo_url` are both specified. Please set only the argument `repo_id`." | |
| ) | |
| repo_id = repo_url.replace(f"{HUGGINGFACE_CO_RESOLVE_ENDPOINT}/", "") | |
| if organization is not None: | |
| warnings.warn( | |
| "The `organization` argument is deprecated and will be removed in v5 of Transformers. Set your " | |
| "organization directly in the `repo_id` passed instead (`repo_id={organization}/{model_id}`)." | |
| ) | |
| if not repo_id.startswith(organization): | |
| if "/" in repo_id: | |
| repo_id = repo_id.split("/")[-1] | |
| repo_id = f"{organization}/{repo_id}" | |
| url = create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True) | |
| return url.repo_id | |
| def _get_files_timestamps(self, working_dir: Union[str, os.PathLike]): | |
| """ | |
| Returns the list of files with their last modification timestamp. | |
| """ | |
| return {f: os.path.getmtime(os.path.join(working_dir, f)) for f in os.listdir(working_dir)} | |
| def _upload_modified_files( | |
| self, | |
| working_dir: Union[str, os.PathLike], | |
| repo_id: str, | |
| files_timestamps: Dict[str, float], | |
| commit_message: Optional[str] = None, | |
| token: Optional[Union[bool, str]] = None, | |
| create_pr: bool = False, | |
| revision: str = None, | |
| commit_description: str = None, | |
| ): | |
| """ | |
| Uploads all modified files in `working_dir` to `repo_id`, based on `files_timestamps`. | |
| """ | |
| if commit_message is None: | |
| if "Model" in self.__class__.__name__: | |
| commit_message = "Upload model" | |
| elif "Config" in self.__class__.__name__: | |
| commit_message = "Upload config" | |
| elif "Tokenizer" in self.__class__.__name__: | |
| commit_message = "Upload tokenizer" | |
| elif "FeatureExtractor" in self.__class__.__name__: | |
| commit_message = "Upload feature extractor" | |
| elif "Processor" in self.__class__.__name__: | |
| commit_message = "Upload processor" | |
| else: | |
| commit_message = f"Upload {self.__class__.__name__}" | |
| modified_files = [ | |
| f | |
| for f in os.listdir(working_dir) | |
| if f not in files_timestamps or os.path.getmtime(os.path.join(working_dir, f)) > files_timestamps[f] | |
| ] | |
| # filter for actual files + folders at the root level | |
| modified_files = [ | |
| f | |
| for f in modified_files | |
| if os.path.isfile(os.path.join(working_dir, f)) or os.path.isdir(os.path.join(working_dir, f)) | |
| ] | |
| operations = [] | |
| # upload standalone files | |
| for file in modified_files: | |
| if os.path.isdir(os.path.join(working_dir, file)): | |
| # go over individual files of folder | |
| for f in os.listdir(os.path.join(working_dir, file)): | |
| operations.append( | |
| CommitOperationAdd( | |
| path_or_fileobj=os.path.join(working_dir, file, f), path_in_repo=os.path.join(file, f) | |
| ) | |
| ) | |
| else: | |
| operations.append( | |
| CommitOperationAdd(path_or_fileobj=os.path.join(working_dir, file), path_in_repo=file) | |
| ) | |
| if revision is not None: | |
| create_branch(repo_id=repo_id, branch=revision, token=token, exist_ok=True) | |
| logger.info(f"Uploading the following files to {repo_id}: {','.join(modified_files)}") | |
| return create_commit( | |
| repo_id=repo_id, | |
| operations=operations, | |
| commit_message=commit_message, | |
| commit_description=commit_description, | |
| token=token, | |
| create_pr=create_pr, | |
| revision=revision, | |
| ) | |
| def push_to_hub( | |
| self, | |
| repo_id: str, | |
| use_temp_dir: Optional[bool] = None, | |
| commit_message: Optional[str] = None, | |
| private: Optional[bool] = None, | |
| token: Optional[Union[bool, str]] = None, | |
| max_shard_size: Optional[Union[int, str]] = "5GB", | |
| create_pr: bool = False, | |
| safe_serialization: bool = True, | |
| revision: str = None, | |
| commit_description: str = None, | |
| tags: Optional[List[str]] = None, | |
| **deprecated_kwargs, | |
| ) -> str: | |
| """ | |
| Upload the {object_files} to the 🤗 Model Hub. | |
| Parameters: | |
| repo_id (`str`): | |
| The name of the repository you want to push your {object} to. It should contain your organization name | |
| when pushing to a given organization. | |
| use_temp_dir (`bool`, *optional*): | |
| Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. | |
| Will default to `True` if there is no directory named like `repo_id`, `False` otherwise. | |
| commit_message (`str`, *optional*): | |
| Message to commit while pushing. Will default to `"Upload {object}"`. | |
| private (`bool`, *optional*): | |
| Whether or not the repository created should be private. | |
| token (`bool` or `str`, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
| when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` | |
| is not specified. | |
| max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`): | |
| Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard | |
| will then be each of size lower than this size. If expressed as a string, needs to be digits followed | |
| by a unit (like `"5MB"`). We default it to `"5GB"` so that users can easily load models on free-tier | |
| Google Colab instances without any CPU OOM issues. | |
| create_pr (`bool`, *optional*, defaults to `False`): | |
| Whether or not to create a PR with the uploaded files or directly commit. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether or not to convert the model weights in safetensors format for safer serialization. | |
| revision (`str`, *optional*): | |
| Branch to push the uploaded files to. | |
| commit_description (`str`, *optional*): | |
| The description of the commit that will be created | |
| tags (`List[str]`, *optional*): | |
| List of tags to push on the Hub. | |
| Examples: | |
| ```python | |
| from transformers import {object_class} | |
| {object} = {object_class}.from_pretrained("google-bert/bert-base-cased") | |
| # Push the {object} to your namespace with the name "my-finetuned-bert". | |
| {object}.push_to_hub("my-finetuned-bert") | |
| # Push the {object} to an organization with the name "my-finetuned-bert". | |
| {object}.push_to_hub("huggingface/my-finetuned-bert") | |
| ``` | |
| """ | |
| use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
| ignore_metadata_errors = deprecated_kwargs.pop("ignore_metadata_errors", False) | |
| if use_auth_token is not None: | |
| warnings.warn( | |
| "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", | |
| FutureWarning, | |
| ) | |
| if token is not None: | |
| raise ValueError( | |
| "`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
| ) | |
| token = use_auth_token | |
| repo_path_or_name = deprecated_kwargs.pop("repo_path_or_name", None) | |
| if repo_path_or_name is not None: | |
| # Should use `repo_id` instead of `repo_path_or_name`. When using `repo_path_or_name`, we try to infer | |
| # repo_id from the folder path, if it exists. | |
| warnings.warn( | |
| "The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use " | |
| "`repo_id` instead.", | |
| FutureWarning, | |
| ) | |
| if repo_id is not None: | |
| raise ValueError( | |
| "`repo_id` and `repo_path_or_name` are both specified. Please set only the argument `repo_id`." | |
| ) | |
| if os.path.isdir(repo_path_or_name): | |
| # repo_path: infer repo_id from the path | |
| repo_id = repo_id.split(os.path.sep)[-1] | |
| working_dir = repo_id | |
| else: | |
| # repo_name: use it as repo_id | |
| repo_id = repo_path_or_name | |
| working_dir = repo_id.split("/")[-1] | |
| else: | |
| # Repo_id is passed correctly: infer working_dir from it | |
| working_dir = repo_id.split("/")[-1] | |
| # Deprecation warning will be sent after for repo_url and organization | |
| repo_url = deprecated_kwargs.pop("repo_url", None) | |
| organization = deprecated_kwargs.pop("organization", None) | |
| repo_id = self._create_repo( | |
| repo_id, private=private, token=token, repo_url=repo_url, organization=organization | |
| ) | |
| # Create a new empty model card and eventually tag it | |
| model_card = create_and_tag_model_card( | |
| repo_id, tags, token=token, ignore_metadata_errors=ignore_metadata_errors | |
| ) | |
| if use_temp_dir is None: | |
| use_temp_dir = not os.path.isdir(working_dir) | |
| with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir: | |
| files_timestamps = self._get_files_timestamps(work_dir) | |
| # Save all files. | |
| self.save_pretrained(work_dir, max_shard_size=max_shard_size, safe_serialization=safe_serialization) | |
| # Update model card if needed: | |
| model_card.save(os.path.join(work_dir, "README.md")) | |
| return self._upload_modified_files( | |
| work_dir, | |
| repo_id, | |
| files_timestamps, | |
| commit_message=commit_message, | |
| token=token, | |
| create_pr=create_pr, | |
| revision=revision, | |
| commit_description=commit_description, | |
| ) | |
| def send_example_telemetry(example_name, *example_args, framework="pytorch"): | |
| """ | |
| Sends telemetry that helps tracking the examples use. | |
| Args: | |
| example_name (`str`): The name of the example. | |
| *example_args (dataclasses or `argparse.ArgumentParser`): The arguments to the script. This function will only | |
| try to extract the model and dataset name from those. Nothing else is tracked. | |
| framework (`str`, *optional*, defaults to `"pytorch"`): The framework for the example. | |
| """ | |
| if is_offline_mode(): | |
| return | |
| data = {"example": example_name, "framework": framework} | |
| for args in example_args: | |
| args_as_dict = {k: v for k, v in args.__dict__.items() if not k.startswith("_") and v is not None} | |
| if "model_name_or_path" in args_as_dict: | |
| model_name = args_as_dict["model_name_or_path"] | |
| # Filter out local paths | |
| if not os.path.isdir(model_name): | |
| data["model_name"] = args_as_dict["model_name_or_path"] | |
| if "dataset_name" in args_as_dict: | |
| data["dataset_name"] = args_as_dict["dataset_name"] | |
| elif "task_name" in args_as_dict: | |
| # Extract script name from the example_name | |
| script_name = example_name.replace("tf_", "").replace("flax_", "").replace("run_", "") | |
| script_name = script_name.replace("_no_trainer", "") | |
| data["dataset_name"] = f"{script_name}-{args_as_dict['task_name']}" | |
| # Send telemetry in the background | |
| send_telemetry( | |
| topic="examples", library_name="transformers", library_version=__version__, user_agent=http_user_agent(data) | |
| ) | |
| def convert_file_size_to_int(size: Union[int, str]): | |
| """ | |
| Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes). | |
| Args: | |
| size (`int` or `str`): The size to convert. Will be directly returned if an `int`. | |
| Example: | |
| ```py | |
| >>> convert_file_size_to_int("1MiB") | |
| 1048576 | |
| ``` | |
| """ | |
| if isinstance(size, int): | |
| return size | |
| if size.upper().endswith("GIB"): | |
| return int(size[:-3]) * (2**30) | |
| if size.upper().endswith("MIB"): | |
| return int(size[:-3]) * (2**20) | |
| if size.upper().endswith("KIB"): | |
| return int(size[:-3]) * (2**10) | |
| if size.upper().endswith("GB"): | |
| int_size = int(size[:-2]) * (10**9) | |
| return int_size // 8 if size.endswith("b") else int_size | |
| if size.upper().endswith("MB"): | |
| int_size = int(size[:-2]) * (10**6) | |
| return int_size // 8 if size.endswith("b") else int_size | |
| if size.upper().endswith("KB"): | |
| int_size = int(size[:-2]) * (10**3) | |
| return int_size // 8 if size.endswith("b") else int_size | |
| raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.") | |
| def get_checkpoint_shard_files( | |
| pretrained_model_name_or_path, | |
| index_filename, | |
| cache_dir=None, | |
| force_download=False, | |
| proxies=None, | |
| resume_download=False, | |
| local_files_only=False, | |
| token=None, | |
| user_agent=None, | |
| revision=None, | |
| subfolder="", | |
| _commit_hash=None, | |
| **deprecated_kwargs, | |
| ): | |
| """ | |
| For a given model: | |
| - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the | |
| Hub | |
| - returns the list of paths to all the shards, as well as some metadata. | |
| For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the | |
| index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub). | |
| """ | |
| import json | |
| use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
| if use_auth_token is not None: | |
| warnings.warn( | |
| "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", | |
| FutureWarning, | |
| ) | |
| if token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| token = use_auth_token | |
| if not os.path.isfile(index_filename): | |
| raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.") | |
| with open(index_filename, "r") as f: | |
| index = json.loads(f.read()) | |
| shard_filenames = sorted(set(index["weight_map"].values())) | |
| sharded_metadata = index["metadata"] | |
| sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys()) | |
| sharded_metadata["weight_map"] = index["weight_map"].copy() | |
| # First, let's deal with local folder. | |
| if os.path.isdir(pretrained_model_name_or_path): | |
| shard_filenames = [os.path.join(pretrained_model_name_or_path, subfolder, f) for f in shard_filenames] | |
| return shard_filenames, sharded_metadata | |
| # At this stage pretrained_model_name_or_path is a model identifier on the Hub | |
| cached_filenames = [] | |
| # Check if the model is already cached or not. We only try the last checkpoint, this should cover most cases of | |
| # downloaded (if interrupted). | |
| last_shard = try_to_load_from_cache( | |
| pretrained_model_name_or_path, shard_filenames[-1], cache_dir=cache_dir, revision=_commit_hash | |
| ) | |
| show_progress_bar = last_shard is None or force_download | |
| for shard_filename in tqdm(shard_filenames, desc="Downloading shards", disable=not show_progress_bar): | |
| try: | |
| # Load from URL | |
| cached_filename = cached_file( | |
| pretrained_model_name_or_path, | |
| shard_filename, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| local_files_only=local_files_only, | |
| token=token, | |
| user_agent=user_agent, | |
| revision=revision, | |
| subfolder=subfolder, | |
| _commit_hash=_commit_hash, | |
| ) | |
| # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so | |
| # we don't have to catch them here. | |
| except EntryNotFoundError: | |
| raise EnvironmentError( | |
| f"{pretrained_model_name_or_path} does not appear to have a file named {shard_filename} which is " | |
| "required according to the checkpoint index." | |
| ) | |
| except HTTPError: | |
| raise EnvironmentError( | |
| f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {shard_filename}. You should try" | |
| " again after checking your internet connection." | |
| ) | |
| cached_filenames.append(cached_filename) | |
| return cached_filenames, sharded_metadata | |
| # All what is below is for conversion between old cache format and new cache format. | |
| def get_all_cached_files(cache_dir=None): | |
| """ | |
| Returns a list for all files cached with appropriate metadata. | |
| """ | |
| if cache_dir is None: | |
| cache_dir = TRANSFORMERS_CACHE | |
| else: | |
| cache_dir = str(cache_dir) | |
| if not os.path.isdir(cache_dir): | |
| return [] | |
| cached_files = [] | |
| for file in os.listdir(cache_dir): | |
| meta_path = os.path.join(cache_dir, f"{file}.json") | |
| if not os.path.isfile(meta_path): | |
| continue | |
| with open(meta_path, encoding="utf-8") as meta_file: | |
| metadata = json.load(meta_file) | |
| url = metadata["url"] | |
| etag = metadata["etag"].replace('"', "") | |
| cached_files.append({"file": file, "url": url, "etag": etag}) | |
| return cached_files | |
| def extract_info_from_url(url): | |
| """ | |
| Extract repo_name, revision and filename from an url. | |
| """ | |
| search = re.search(r"^https://huggingface\.co/(.*)/resolve/([^/]*)/(.*)$", url) | |
| if search is None: | |
| return None | |
| repo, revision, filename = search.groups() | |
| cache_repo = "--".join(["models"] + repo.split("/")) | |
| return {"repo": cache_repo, "revision": revision, "filename": filename} | |
| def create_and_tag_model_card( | |
| repo_id: str, | |
| tags: Optional[List[str]] = None, | |
| token: Optional[str] = None, | |
| ignore_metadata_errors: bool = False, | |
| ): | |
| """ | |
| Creates or loads an existing model card and tags it. | |
| Args: | |
| repo_id (`str`): | |
| The repo_id where to look for the model card. | |
| tags (`List[str]`, *optional*): | |
| The list of tags to add in the model card | |
| token (`str`, *optional*): | |
| Authentication token, obtained with `huggingface_hub.HfApi.login` method. Will default to the stored token. | |
| ignore_metadata_errors (`str`): | |
| If True, errors while parsing the metadata section will be ignored. Some information might be lost during | |
| the process. Use it at your own risk. | |
| """ | |
| try: | |
| # Check if the model card is present on the remote repo | |
| model_card = ModelCard.load(repo_id, token=token, ignore_metadata_errors=ignore_metadata_errors) | |
| except EntryNotFoundError: | |
| # Otherwise create a simple model card from template | |
| model_description = "This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated." | |
| card_data = ModelCardData(tags=[] if tags is None else tags, library_name="transformers") | |
| model_card = ModelCard.from_template(card_data, model_description=model_description) | |
| if tags is not None: | |
| for model_tag in tags: | |
| if model_tag not in model_card.data.tags: | |
| model_card.data.tags.append(model_tag) | |
| return model_card | |
| def clean_files_for(file): | |
| """ | |
| Remove, if they exist, file, file.json and file.lock | |
| """ | |
| for f in [file, f"{file}.json", f"{file}.lock"]: | |
| if os.path.isfile(f): | |
| os.remove(f) | |
| def move_to_new_cache(file, repo, filename, revision, etag, commit_hash): | |
| """ | |
| Move file to repo following the new huggingface hub cache organization. | |
| """ | |
| os.makedirs(repo, exist_ok=True) | |
| # refs | |
| os.makedirs(os.path.join(repo, "refs"), exist_ok=True) | |
| if revision != commit_hash: | |
| ref_path = os.path.join(repo, "refs", revision) | |
| with open(ref_path, "w") as f: | |
| f.write(commit_hash) | |
| # blobs | |
| os.makedirs(os.path.join(repo, "blobs"), exist_ok=True) | |
| blob_path = os.path.join(repo, "blobs", etag) | |
| shutil.move(file, blob_path) | |
| # snapshots | |
| os.makedirs(os.path.join(repo, "snapshots"), exist_ok=True) | |
| os.makedirs(os.path.join(repo, "snapshots", commit_hash), exist_ok=True) | |
| pointer_path = os.path.join(repo, "snapshots", commit_hash, filename) | |
| huggingface_hub.file_download._create_relative_symlink(blob_path, pointer_path) | |
| clean_files_for(file) | |
| def move_cache(cache_dir=None, new_cache_dir=None, token=None): | |
| if new_cache_dir is None: | |
| new_cache_dir = TRANSFORMERS_CACHE | |
| if cache_dir is None: | |
| # Migrate from old cache in .cache/huggingface/transformers | |
| old_cache = Path(TRANSFORMERS_CACHE).parent / "transformers" | |
| if os.path.isdir(str(old_cache)): | |
| cache_dir = str(old_cache) | |
| else: | |
| cache_dir = new_cache_dir | |
| cached_files = get_all_cached_files(cache_dir=cache_dir) | |
| logger.info(f"Moving {len(cached_files)} files to the new cache system") | |
| hub_metadata = {} | |
| for file_info in tqdm(cached_files): | |
| url = file_info.pop("url") | |
| if url not in hub_metadata: | |
| try: | |
| hub_metadata[url] = get_hf_file_metadata(url, token=token) | |
| except requests.HTTPError: | |
| continue | |
| etag, commit_hash = hub_metadata[url].etag, hub_metadata[url].commit_hash | |
| if etag is None or commit_hash is None: | |
| continue | |
| if file_info["etag"] != etag: | |
| # Cached file is not up to date, we just throw it as a new version will be downloaded anyway. | |
| clean_files_for(os.path.join(cache_dir, file_info["file"])) | |
| continue | |
| url_info = extract_info_from_url(url) | |
| if url_info is None: | |
| # Not a file from huggingface.co | |
| continue | |
| repo = os.path.join(new_cache_dir, url_info["repo"]) | |
| move_to_new_cache( | |
| file=os.path.join(cache_dir, file_info["file"]), | |
| repo=repo, | |
| filename=url_info["filename"], | |
| revision=url_info["revision"], | |
| etag=etag, | |
| commit_hash=commit_hash, | |
| ) | |
| class PushInProgress: | |
| """ | |
| Internal class to keep track of a push in progress (which might contain multiple `Future` jobs). | |
| """ | |
| def __init__(self, jobs: Optional[futures.Future] = None) -> None: | |
| self.jobs = [] if jobs is None else jobs | |
| def is_done(self): | |
| return all(job.done() for job in self.jobs) | |
| def wait_until_done(self): | |
| futures.wait(self.jobs) | |
| def cancel(self) -> None: | |
| self.jobs = [ | |
| job | |
| for job in self.jobs | |
| # Cancel the job if it wasn't started yet and remove cancelled/done jobs from the list | |
| if not (job.cancel() or job.done()) | |
| ] | |
| cache_version_file = os.path.join(TRANSFORMERS_CACHE, "version.txt") | |
| if not os.path.isfile(cache_version_file): | |
| cache_version = 0 | |
| else: | |
| with open(cache_version_file) as f: | |
| try: | |
| cache_version = int(f.read()) | |
| except ValueError: | |
| cache_version = 0 | |
| cache_is_not_empty = os.path.isdir(TRANSFORMERS_CACHE) and len(os.listdir(TRANSFORMERS_CACHE)) > 0 | |
| if cache_version < 1 and cache_is_not_empty: | |
| if is_offline_mode(): | |
| logger.warning( | |
| "You are offline and the cache for model files in Transformers v4.22.0 has been updated while your local " | |
| "cache seems to be the one of a previous version. It is very likely that all your calls to any " | |
| "`from_pretrained()` method will fail. Remove the offline mode and enable internet connection to have " | |
| "your cache be updated automatically, then you can go back to offline mode." | |
| ) | |
| else: | |
| logger.warning( | |
| "The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a " | |
| "one-time only operation. You can interrupt this and resume the migration later on by calling " | |
| "`transformers.utils.move_cache()`." | |
| ) | |
| try: | |
| if TRANSFORMERS_CACHE != constants.HF_HUB_CACHE: | |
| # Users set some env variable to customize cache storage | |
| move_cache(TRANSFORMERS_CACHE, TRANSFORMERS_CACHE) | |
| else: | |
| move_cache() | |
| except Exception as e: | |
| trace = "\n".join(traceback.format_tb(e.__traceback__)) | |
| logger.error( | |
| f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " | |
| "file an issue at https://github.com/huggingface/transformers/issues/new/choose and copy paste this whole " | |
| "message and we will do our best to help." | |
| ) | |
| if cache_version < 1: | |
| try: | |
| os.makedirs(TRANSFORMERS_CACHE, exist_ok=True) | |
| with open(cache_version_file, "w") as f: | |
| f.write("1") | |
| except Exception: | |
| logger.warning( | |
| f"There was a problem when trying to write in your cache folder ({TRANSFORMERS_CACHE}). You should set " | |
| "the environment variable TRANSFORMERS_CACHE to a writable directory." | |
| ) | |