Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2019 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import collections | |
| import copy | |
| import gc | |
| import inspect | |
| import os | |
| import os.path | |
| import pickle | |
| import random | |
| import re | |
| import tempfile | |
| import warnings | |
| from collections import defaultdict | |
| from typing import Dict, List, Tuple | |
| import numpy as np | |
| from parameterized import parameterized | |
| from pytest import mark | |
| import transformers | |
| from transformers import ( | |
| AutoModel, | |
| AutoModelForCausalLM, | |
| AutoModelForSequenceClassification, | |
| PretrainedConfig, | |
| PreTrainedModel, | |
| is_torch_available, | |
| logging, | |
| set_seed, | |
| ) | |
| from transformers.models.auto import get_values | |
| from transformers.models.auto.modeling_auto import ( | |
| MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, | |
| MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES, | |
| MODEL_FOR_BACKBONE_MAPPING_NAMES, | |
| MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES, | |
| MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, | |
| MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, | |
| MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, | |
| MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES, | |
| MODEL_FOR_MASKED_LM_MAPPING_NAMES, | |
| MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, | |
| MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES, | |
| MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, | |
| MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, | |
| MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, | |
| MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, | |
| MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, | |
| MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, | |
| MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES, | |
| MODEL_MAPPING_NAMES, | |
| ) | |
| from transformers.testing_utils import ( | |
| CaptureLogger, | |
| is_flaky, | |
| is_pt_flax_cross_test, | |
| is_pt_tf_cross_test, | |
| require_accelerate, | |
| require_bitsandbytes, | |
| require_flash_attn, | |
| require_safetensors, | |
| require_torch, | |
| require_torch_gpu, | |
| require_torch_multi_gpu, | |
| require_torch_sdpa, | |
| slow, | |
| torch_device, | |
| ) | |
| from transformers.utils import ( | |
| CONFIG_NAME, | |
| GENERATION_CONFIG_NAME, | |
| SAFE_WEIGHTS_NAME, | |
| is_accelerate_available, | |
| is_flax_available, | |
| is_tf_available, | |
| is_torch_bf16_available_on_device, | |
| is_torch_fp16_available_on_device, | |
| is_torch_fx_available, | |
| is_torch_sdpa_available, | |
| ) | |
| from transformers.utils.generic import ContextManagers, ModelOutput | |
| if is_accelerate_available(): | |
| from accelerate.utils import compute_module_sizes | |
| if is_torch_available(): | |
| import torch | |
| import torch.nn.functional as F | |
| from safetensors.torch import load_file as safe_load_file | |
| from safetensors.torch import save_file as safe_save_file | |
| from torch import nn | |
| from transformers import MODEL_MAPPING, AdaptiveEmbedding | |
| from transformers.modeling_utils import load_state_dict, no_init_weights | |
| from transformers.pytorch_utils import id_tensor_storage | |
| if is_tf_available(): | |
| import tensorflow as tf | |
| if is_flax_available(): | |
| import jax.numpy as jnp | |
| from tests.test_modeling_flax_utils import check_models_equal | |
| from transformers.modeling_flax_pytorch_utils import ( | |
| convert_pytorch_state_dict_to_flax, | |
| load_flax_weights_in_pytorch_model, | |
| ) | |
| if is_torch_fx_available(): | |
| from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace | |
| def _config_zero_init(config): | |
| configs_no_init = copy.deepcopy(config) | |
| for key in configs_no_init.__dict__.keys(): | |
| if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: | |
| setattr(configs_no_init, key, 1e-10) | |
| if isinstance(getattr(configs_no_init, key, None), PretrainedConfig): | |
| no_init_subconfig = _config_zero_init(getattr(configs_no_init, key)) | |
| setattr(configs_no_init, key, no_init_subconfig) | |
| return configs_no_init | |
| def _mock_init_weights(self, module): | |
| for name, param in module.named_parameters(recurse=False): | |
| # Use the first letter of the name to get a value and go from a <> -13 to z <> 12 | |
| value = ord(name[0].lower()) - 110 | |
| param.data.fill_(value) | |
| def _mock_all_init_weights(self): | |
| # Prune heads if needed | |
| if self.config.pruned_heads: | |
| self.prune_heads(self.config.pruned_heads) | |
| import transformers.modeling_utils | |
| if transformers.modeling_utils._init_weights: | |
| for module in self.modules(): | |
| module._is_hf_initialized = False | |
| # Initialize weights | |
| self.apply(self._initialize_weights) | |
| # Tie weights should be skipped when not initializing all weights | |
| # since from_pretrained(...) calls tie weights anyways | |
| self.tie_weights() | |
| class ModelTesterMixin: | |
| model_tester = None | |
| all_model_classes = () | |
| all_generative_model_classes = () | |
| fx_compatible = False | |
| test_torchscript = True | |
| test_pruning = True | |
| test_resize_embeddings = True | |
| test_resize_position_embeddings = False | |
| test_head_masking = True | |
| test_mismatched_shapes = True | |
| test_missing_keys = True | |
| test_model_parallel = False | |
| is_encoder_decoder = False | |
| has_attentions = True | |
| model_split_percents = [0.5, 0.7, 0.9] | |
| def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
| inputs_dict = copy.deepcopy(inputs_dict) | |
| if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES): | |
| inputs_dict = { | |
| k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() | |
| if isinstance(v, torch.Tensor) and v.ndim > 1 | |
| else v | |
| for k, v in inputs_dict.items() | |
| } | |
| elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES): | |
| inputs_dict.pop("attention_mask") | |
| if return_labels: | |
| if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES): | |
| inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device) | |
| elif model_class.__name__ in [ | |
| *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES), | |
| ]: | |
| inputs_dict["start_positions"] = torch.zeros( | |
| self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
| ) | |
| inputs_dict["end_positions"] = torch.zeros( | |
| self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
| ) | |
| elif model_class.__name__ in [ | |
| *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES), | |
| ]: | |
| inputs_dict["labels"] = torch.zeros( | |
| self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
| ) | |
| elif model_class.__name__ in [ | |
| *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES), | |
| ]: | |
| inputs_dict["labels"] = torch.zeros( | |
| (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device | |
| ) | |
| elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES): | |
| num_patches = self.model_tester.image_size // self.model_tester.patch_size | |
| inputs_dict["bool_masked_pos"] = torch.zeros( | |
| (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device | |
| ) | |
| elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES): | |
| batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape | |
| inputs_dict["labels"] = torch.zeros( | |
| [self.model_tester.batch_size, height, width], device=torch_device | |
| ).long() | |
| return inputs_dict | |
| def test_save_load(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| def check_save_load(out1, out2): | |
| # make sure we don't have nans | |
| out_2 = out2.cpu().numpy() | |
| out_2[np.isnan(out_2)] = 0 | |
| out_1 = out1.cpu().numpy() | |
| out_1[np.isnan(out_1)] = 0 | |
| max_diff = np.amax(np.abs(out_1 - out_2)) | |
| self.assertLessEqual(max_diff, 1e-5) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| first = model(**self._prepare_for_class(inputs_dict, model_class))[0] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| # the config file (and the generation config file, if it can generate) should be saved | |
| self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) | |
| self.assertEqual( | |
| model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) | |
| ) | |
| model = model_class.from_pretrained(tmpdirname) | |
| model.to(torch_device) | |
| with torch.no_grad(): | |
| second = model(**self._prepare_for_class(inputs_dict, model_class))[0] | |
| if isinstance(first, tuple) and isinstance(second, tuple): | |
| for tensor1, tensor2 in zip(first, second): | |
| check_save_load(tensor1, tensor2) | |
| else: | |
| check_save_load(first, second) | |
| def test_from_pretrained_no_checkpoint(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| state_dict = model.state_dict() | |
| new_model = model_class.from_pretrained( | |
| pretrained_model_name_or_path=None, config=config, state_dict=state_dict | |
| ) | |
| for p1, p2 in zip(model.parameters(), new_model.parameters()): | |
| self.assertTrue(torch.equal(p1, p2)) | |
| def test_keep_in_fp32_modules(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| if model_class._keep_in_fp32_modules is None: | |
| return | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16) | |
| for name, param in model.named_parameters(): | |
| if any(n in model_class._keep_in_fp32_modules for n in name.split(".")): | |
| self.assertTrue(param.dtype == torch.float32) | |
| else: | |
| self.assertTrue(param.dtype == torch.float16, name) | |
| def test_save_load_keys_to_ignore_on_save(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None) | |
| if _keys_to_ignore_on_save is None: | |
| continue | |
| # check the keys are in the original state_dict | |
| for k in _keys_to_ignore_on_save: | |
| self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys())) | |
| # check that certain keys didn't get saved with the model | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME) | |
| state_dict_saved = safe_load_file(output_model_file) | |
| for k in _keys_to_ignore_on_save: | |
| self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys())) | |
| # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer. | |
| load_result = model.load_state_dict(state_dict_saved, strict=False) | |
| keys_to_ignore = set(model._keys_to_ignore_on_save) | |
| if hasattr(model, "_tied_weights_keys"): | |
| keys_to_ignore.update(set(model._tied_weights_keys)) | |
| self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore) | |
| self.assertTrue(len(load_result.unexpected_keys) == 0) | |
| def test_gradient_checkpointing_backward_compatibility(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| if not model_class.supports_gradient_checkpointing: | |
| continue | |
| config.gradient_checkpointing = True | |
| model = model_class(config) | |
| self.assertTrue(model.is_gradient_checkpointing) | |
| def test_gradient_checkpointing_enable_disable(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| if not model_class.supports_gradient_checkpointing: | |
| continue | |
| # at init model should have gradient checkpointing disabled | |
| model = model_class(config) | |
| self.assertFalse(model.is_gradient_checkpointing) | |
| # check enable works | |
| model.gradient_checkpointing_enable() | |
| self.assertTrue(model.is_gradient_checkpointing) | |
| # Loop over all modules and check that relevant modules have gradient_checkpointing set to True | |
| for n, m in model.named_modules(): | |
| if hasattr(m, "gradient_checkpointing"): | |
| self.assertTrue( | |
| m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True" | |
| ) | |
| # check disable works | |
| model.gradient_checkpointing_disable() | |
| self.assertFalse(model.is_gradient_checkpointing) | |
| # Loop over all modules and check that relevant modules have gradient_checkpointing set to False | |
| for n, m in model.named_modules(): | |
| if hasattr(m, "gradient_checkpointing"): | |
| self.assertFalse( | |
| m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False" | |
| ) | |
| def test_save_load_fast_init_from_base(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| if config.__class__ not in MODEL_MAPPING: | |
| return | |
| base_class = MODEL_MAPPING[config.__class__] | |
| if isinstance(base_class, tuple): | |
| base_class = base_class[0] | |
| for model_class in self.all_model_classes: | |
| if model_class == base_class: | |
| continue | |
| # make a copy of model class to not break future tests | |
| # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class | |
| class CopyClass(model_class): | |
| pass | |
| model_class_copy = CopyClass | |
| # make sure that all keys are expected for test | |
| model_class_copy._keys_to_ignore_on_load_missing = [] | |
| # make init deterministic, but make sure that | |
| # non-initialized weights throw errors nevertheless | |
| model_class_copy._init_weights = _mock_init_weights | |
| model_class_copy.init_weights = _mock_all_init_weights | |
| model = base_class(config) | |
| state_dict = model.state_dict() | |
| # this will often delete a single weight of a multi-weight module | |
| # to test an edge case | |
| random_key_to_del = random.choice(list(state_dict.keys())) | |
| del state_dict[random_key_to_del] | |
| # check that certain keys didn't get saved with the model | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) | |
| model_fast_init = model_class_copy.from_pretrained(tmpdirname) | |
| model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False) | |
| # Before we test anything | |
| for key in model_fast_init.state_dict().keys(): | |
| if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor): | |
| max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item() | |
| else: | |
| max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item() | |
| self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") | |
| def test_fast_init_context_manager(self): | |
| # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__ | |
| class MyClass(PreTrainedModel): | |
| config_class = PretrainedConfig | |
| def __init__(self, config=None): | |
| super().__init__(config if config is not None else PretrainedConfig()) | |
| self.linear = nn.Linear(10, 10, bias=True) | |
| self.embedding = nn.Embedding(10, 10) | |
| self.std = 1 | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5)) | |
| if module.bias is not None: | |
| module.bias.data.normal_(mean=0.0, std=self.std) | |
| # 2. Make sure a linear layer's reset params is properly skipped: | |
| with ContextManagers([no_init_weights(True)]): | |
| no_init_instance = MyClass() | |
| set_seed(0) | |
| expected_bias = torch.tensor( | |
| ([0.2975, 0.2131, -0.1379, -0.0796, -0.3012, -0.0057, -0.2381, -0.2439, -0.0174, 0.0475]) | |
| ) | |
| init_instance = MyClass() | |
| torch.testing.assert_close(init_instance.linear.bias, expected_bias, rtol=1e-3, atol=1e-4) | |
| set_seed(0) | |
| torch.testing.assert_close( | |
| init_instance.linear.weight, nn.init.kaiming_uniform_(no_init_instance.linear.weight, np.sqrt(5)) | |
| ) | |
| # 3. Make sure weights that are not present use init_weight_ and get expected values | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| state_dict = init_instance.state_dict() | |
| del state_dict["linear.weight"] | |
| init_instance.config.save_pretrained(tmpdirname) | |
| torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) | |
| set_seed(0) | |
| model_fast_init = MyClass.from_pretrained(tmpdirname) | |
| set_seed(0) | |
| model_slow_init = MyClass.from_pretrained(tmpdirname, _fast_init=False) | |
| for key in model_fast_init.state_dict().keys(): | |
| max_diff = torch.max(torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])) | |
| self.assertLessEqual(max_diff.item(), 1e-3, msg=f"{key} not identical") | |
| def test_fast_init_tied_embeddings(self): | |
| class MyClass(PreTrainedModel): | |
| config_class = PretrainedConfig | |
| _tied_weights_keys = ["output_embeddings.weight"] | |
| def __init__(self, config=None): | |
| super().__init__(config if config is not None else PretrainedConfig()) | |
| self.input_embeddings = nn.Embedding(10, 10) | |
| self.output_embeddings = nn.Linear(10, 10, bias=False) | |
| self.tie_weights() | |
| def get_output_embeddings(self): | |
| return self.output_embeddings | |
| def set_output_embeddings(self, output_embeddings): | |
| self.output_embeddings = output_embeddings | |
| def get_input_embeddings(self): | |
| return self.input_embeddings | |
| def set_input_embeddings(self, input_embeddings): | |
| self.input_embeddings = input_embeddings | |
| def _init_weights(self, module): | |
| if module is self.output_embeddings: | |
| raise ValueError("unnecessarily initialized tied output embedding!") | |
| model = MyClass() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| # throws if it initializes the tied output_embeddings | |
| MyClass.from_pretrained(tmpdirname) | |
| def test_save_load_fast_init_to_base(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| if config.__class__ not in MODEL_MAPPING: | |
| return | |
| base_class = MODEL_MAPPING[config.__class__] | |
| if isinstance(base_class, tuple): | |
| base_class = base_class[0] | |
| for model_class in self.all_model_classes: | |
| if model_class == base_class: | |
| continue | |
| # make a copy of model class to not break future tests | |
| # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class | |
| class CopyClass(base_class): | |
| pass | |
| base_class_copy = CopyClass | |
| # make sure that all keys are expected for test | |
| base_class_copy._keys_to_ignore_on_load_missing = [] | |
| # make init deterministic, but make sure that | |
| # non-initialized weights throw errors nevertheless | |
| base_class_copy._init_weights = _mock_init_weights | |
| base_class_copy.init_weights = _mock_all_init_weights | |
| model = model_class(config) | |
| state_dict = model.state_dict() | |
| # this will often delete a single weight of a multi-weight module | |
| # to test an edge case | |
| random_key_to_del = random.choice(list(state_dict.keys())) | |
| del state_dict[random_key_to_del] | |
| # check that certain keys didn't get saved with the model | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.config.save_pretrained(tmpdirname) | |
| torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) | |
| model_fast_init = base_class_copy.from_pretrained(tmpdirname) | |
| model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False) | |
| for key in model_fast_init.state_dict().keys(): | |
| if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor): | |
| max_diff = torch.max( | |
| model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key] | |
| ).item() | |
| else: | |
| max_diff = torch.max( | |
| torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]) | |
| ).item() | |
| self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") | |
| def test_torch_save_load(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| if config.__class__ not in MODEL_MAPPING: | |
| return | |
| base_class = MODEL_MAPPING[config.__class__] | |
| if isinstance(base_class, tuple): | |
| base_class = base_class[0] | |
| for model_class in self.all_model_classes: | |
| if model_class == base_class: | |
| continue | |
| # make a copy of model class to not break future tests | |
| # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class | |
| class CopyClass(base_class): | |
| pass | |
| base_class_copy = CopyClass | |
| # make sure that all keys are expected for test | |
| base_class_copy._keys_to_ignore_on_load_missing = [] | |
| # make init deterministic, but make sure that | |
| # non-initialized weights throw errors nevertheless | |
| base_class_copy._init_weights = _mock_init_weights | |
| base_class_copy.init_weights = _mock_all_init_weights | |
| model = model_class(config) | |
| state_dict = model.state_dict() | |
| def check_equal(loaded): | |
| for key in state_dict.keys(): | |
| max_diff = torch.max( | |
| state_dict()[key] ^ loaded[key] | |
| if isinstance(state_dict[key], torch.BoolTensor) | |
| else torch.abs(state_dict[key] - loaded[key]) | |
| ).item() | |
| self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical") | |
| # check that certain keys didn't get saved with the model | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin") | |
| torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True) | |
| check_equal(load_state_dict(pt_checkpoint_path)) | |
| torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False) | |
| check_equal(load_state_dict(pt_checkpoint_path)) | |
| def test_initialization(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| for name, param in model.named_parameters(): | |
| if param.requires_grad: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| def test_determinism(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| def check_determinism(first, second): | |
| out_1 = first.cpu().numpy() | |
| out_2 = second.cpu().numpy() | |
| out_1 = out_1[~np.isnan(out_1)] | |
| out_2 = out_2[~np.isnan(out_2)] | |
| max_diff = np.amax(np.abs(out_1 - out_2)) | |
| self.assertLessEqual(max_diff, 1e-5) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| first = model(**self._prepare_for_class(inputs_dict, model_class))[0] | |
| second = model(**self._prepare_for_class(inputs_dict, model_class))[0] | |
| if isinstance(first, tuple) and isinstance(second, tuple): | |
| for tensor1, tensor2 in zip(first, second): | |
| check_determinism(tensor1, tensor2) | |
| else: | |
| check_determinism(first, second) | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| if model.config.is_encoder_decoder: | |
| expected_arg_names = [ | |
| "input_ids", | |
| "attention_mask", | |
| "decoder_input_ids", | |
| "decoder_attention_mask", | |
| ] | |
| expected_arg_names.extend( | |
| ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] | |
| if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names | |
| else ["encoder_outputs"] | |
| ) | |
| self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
| elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and self.has_attentions: | |
| expected_arg_names = ["pixel_values", "output_hidden_states", "output_attentions", "return_dict"] | |
| self.assertListEqual(arg_names, expected_arg_names) | |
| elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and not self.has_attentions: | |
| expected_arg_names = ["pixel_values", "output_hidden_states", "return_dict"] | |
| self.assertListEqual(arg_names, expected_arg_names) | |
| else: | |
| expected_arg_names = [model.main_input_name] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_batching_equivalence(self): | |
| """ | |
| Tests that the model supports batching and that the output is the nearly the same for the same input in | |
| different batch sizes. | |
| (Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to | |
| different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535) | |
| """ | |
| def get_tensor_equivalence_function(batched_input): | |
| # models operating on continuous spaces have higher abs difference than LMs | |
| # instead, we can rely on cos distance for image/speech models, similar to `diffusers` | |
| if "input_ids" not in batched_input: | |
| return lambda tensor1, tensor2: ( | |
| 1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38) | |
| ) | |
| return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2)) | |
| def recursive_check(batched_object, single_row_object, model_name, key): | |
| if isinstance(batched_object, (list, tuple)): | |
| for batched_object_value, single_row_object_value in zip(batched_object, single_row_object): | |
| recursive_check(batched_object_value, single_row_object_value, model_name, key) | |
| elif isinstance(batched_object, dict): | |
| for batched_object_value, single_row_object_value in zip( | |
| batched_object.values(), single_row_object.values() | |
| ): | |
| recursive_check(batched_object_value, single_row_object_value, model_name, key) | |
| # do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects | |
| elif batched_object is None or not isinstance(batched_object, torch.Tensor): | |
| return | |
| elif batched_object.dim() == 0: | |
| return | |
| else: | |
| # indexing the first element does not always work | |
| # e.g. models that output similarity scores of size (N, M) would need to index [0, 0] | |
| slice_ids = [slice(0, index) for index in single_row_object.shape] | |
| batched_row = batched_object[slice_ids] | |
| self.assertFalse( | |
| torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}" | |
| ) | |
| self.assertFalse( | |
| torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}" | |
| ) | |
| self.assertFalse( | |
| torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}" | |
| ) | |
| self.assertFalse( | |
| torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}" | |
| ) | |
| self.assertTrue( | |
| (equivalence(batched_row, single_row_object)) <= 1e-03, | |
| msg=( | |
| f"Batched and Single row outputs are not equal in {model_name} for key={key}. " | |
| f"Difference={equivalence(batched_row, single_row_object)}." | |
| ), | |
| ) | |
| config, batched_input = self.model_tester.prepare_config_and_inputs_for_common() | |
| equivalence = get_tensor_equivalence_function(batched_input) | |
| for model_class in self.all_model_classes: | |
| config.output_hidden_states = True | |
| model_name = model_class.__name__ | |
| if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"): | |
| config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) | |
| batched_input_prepared = self._prepare_for_class(batched_input, model_class) | |
| model = model_class(config).to(torch_device).eval() | |
| batch_size = self.model_tester.batch_size | |
| single_row_input = {} | |
| for key, value in batched_input_prepared.items(): | |
| if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0: | |
| # e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size | |
| single_batch_shape = value.shape[0] // batch_size | |
| single_row_input[key] = value[:single_batch_shape] | |
| else: | |
| single_row_input[key] = value | |
| with torch.no_grad(): | |
| model_batched_output = model(**batched_input_prepared) | |
| model_row_output = model(**single_row_input) | |
| if isinstance(model_batched_output, torch.Tensor): | |
| model_batched_output = {"model_output": model_batched_output} | |
| model_row_output = {"model_output": model_row_output} | |
| for key in model_batched_output: | |
| # DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan` | |
| if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key: | |
| model_batched_output[key] = model_batched_output[key][1:] | |
| model_row_output[key] = model_row_output[key][1:] | |
| recursive_check(model_batched_output[key], model_row_output[key], model_name, key) | |
| def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None): | |
| if not self.model_tester.is_training: | |
| return | |
| for model_class in self.all_model_classes: | |
| if ( | |
| model_class.__name__ | |
| in [ | |
| *get_values(MODEL_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), | |
| ] | |
| or not model_class.supports_gradient_checkpointing | |
| ): | |
| continue | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.use_cache = False | |
| config.return_dict = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs) | |
| model.train() | |
| # unfreeze additional layers | |
| for p in model.parameters(): | |
| p.requires_grad_(True) | |
| optimizer = torch.optim.SGD(model.parameters(), lr=0.01) | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| optimizer.step() | |
| for k, v in model.named_parameters(): | |
| if v.requires_grad: | |
| self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!") | |
| def test_training(self): | |
| if not self.model_tester.is_training: | |
| return | |
| for model_class in self.all_model_classes: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| if model_class.__name__ in [ | |
| *get_values(MODEL_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), | |
| ]: | |
| continue | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| def test_training_gradient_checkpointing(self): | |
| # Scenario - 1 default behaviour | |
| self.check_training_gradient_checkpointing() | |
| def test_training_gradient_checkpointing_use_reentrant(self): | |
| # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's | |
| # torch.utils.checkpoint.checkpoint | |
| self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True}) | |
| def test_training_gradient_checkpointing_use_reentrant_false(self): | |
| # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for | |
| # future releases: https://pytorch.org/docs/stable/checkpoint.html | |
| self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False}) | |
| def test_attention_outputs(self): | |
| if not self.has_attentions: | |
| self.skipTest(reason="Model does not output attentions") | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| seq_len = getattr(self.model_tester, "seq_length", None) | |
| decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) | |
| encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) | |
| decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) | |
| encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) | |
| chunk_length = getattr(self.model_tester, "chunk_length", None) | |
| if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): | |
| encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = False | |
| config.return_dict = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| # check that output_attentions also work using config | |
| del inputs_dict["output_attentions"] | |
| config.output_attentions = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| if chunk_length is not None: | |
| self.assertListEqual( | |
| list(attentions[0].shape[-4:]), | |
| [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], | |
| ) | |
| else: | |
| self.assertListEqual( | |
| list(attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], | |
| ) | |
| out_len = len(outputs) | |
| if self.is_encoder_decoder: | |
| correct_outlen = 5 | |
| # loss is at first position | |
| if "labels" in inputs_dict: | |
| correct_outlen += 1 # loss is added to beginning | |
| # Question Answering model returns start_logits and end_logits | |
| if model_class.__name__ in [ | |
| *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES), | |
| ]: | |
| correct_outlen += 1 # start_logits and end_logits instead of only 1 output | |
| if "past_key_values" in outputs: | |
| correct_outlen += 1 # past_key_values have been returned | |
| self.assertEqual(out_len, correct_outlen) | |
| # decoder attentions | |
| decoder_attentions = outputs.decoder_attentions | |
| self.assertIsInstance(decoder_attentions, (list, tuple)) | |
| self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(decoder_attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], | |
| ) | |
| # cross attentions | |
| cross_attentions = outputs.cross_attentions | |
| self.assertIsInstance(cross_attentions, (list, tuple)) | |
| self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(cross_attentions[0].shape[-3:]), | |
| [ | |
| self.model_tester.num_attention_heads, | |
| decoder_seq_length, | |
| encoder_key_length, | |
| ], | |
| ) | |
| # Check attention is always last and order is fine | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| if hasattr(self.model_tester, "num_hidden_states_types"): | |
| added_hidden_states = self.model_tester.num_hidden_states_types | |
| elif self.is_encoder_decoder: | |
| added_hidden_states = 2 | |
| else: | |
| added_hidden_states = 1 | |
| self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
| self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
| self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
| if chunk_length is not None: | |
| self.assertListEqual( | |
| list(self_attentions[0].shape[-4:]), | |
| [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], | |
| ) | |
| else: | |
| self.assertListEqual( | |
| list(self_attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], | |
| ) | |
| def test_torchscript_simple(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| self._create_and_check_torchscript(config, inputs_dict) | |
| def test_torchscript_output_attentions(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.output_attentions = True | |
| self._create_and_check_torchscript(config, inputs_dict) | |
| def test_torchscript_output_hidden_state(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.output_hidden_states = True | |
| self._create_and_check_torchscript(config, inputs_dict) | |
| # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry` | |
| def clear_torch_jit_class_registry(self): | |
| torch._C._jit_clear_class_registry() | |
| torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore() | |
| # torch 1.8 has no `_clear_class_state` in `torch.jit._state` | |
| if hasattr(torch.jit._state, "_clear_class_state"): | |
| torch.jit._state._clear_class_state() | |
| def _create_and_check_torchscript(self, config, inputs_dict): | |
| if not self.test_torchscript: | |
| return | |
| configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
| configs_no_init.torchscript = True | |
| for model_class in self.all_model_classes: | |
| for attn_implementation in ["eager", "sdpa"]: | |
| if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()): | |
| continue | |
| configs_no_init._attn_implementation = attn_implementation | |
| model = model_class(config=configs_no_init) | |
| model.to(torch_device) | |
| model.eval() | |
| inputs = self._prepare_for_class(inputs_dict, model_class) | |
| main_input_name = model_class.main_input_name | |
| try: | |
| if model.config.is_encoder_decoder: | |
| model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward | |
| main_input = inputs[main_input_name] | |
| attention_mask = inputs["attention_mask"] | |
| decoder_input_ids = inputs["decoder_input_ids"] | |
| decoder_attention_mask = inputs["decoder_attention_mask"] | |
| model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask) | |
| traced_model = torch.jit.trace( | |
| model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask) | |
| ) | |
| elif "bbox" in inputs and "image" in inputs: # LayoutLMv2 requires additional inputs | |
| input_ids = inputs["input_ids"] | |
| bbox = inputs["bbox"] | |
| image = inputs["image"].tensor | |
| model(input_ids, bbox, image) | |
| traced_model = torch.jit.trace( | |
| model, (input_ids, bbox, image), check_trace=False | |
| ) # when traced model is checked, an error is produced due to name mangling | |
| elif "bbox" in inputs: # Bros requires additional inputs (bbox) | |
| input_ids = inputs["input_ids"] | |
| bbox = inputs["bbox"] | |
| model(input_ids, bbox) | |
| traced_model = torch.jit.trace( | |
| model, (input_ids, bbox), check_trace=False | |
| ) # when traced model is checked, an error is produced due to name mangling | |
| elif ( | |
| "pixel_values" in inputs and "prompt_pixel_values" in inputs and "prompt_masks" in inputs | |
| ): # SegGpt requires additional inputs | |
| pixel_values = inputs["pixel_values"] | |
| prompt_pixel_values = inputs["prompt_pixel_values"] | |
| prompt_masks = inputs["prompt_masks"] | |
| model(pixel_values, prompt_pixel_values, prompt_masks) | |
| traced_model = torch.jit.trace( | |
| model, (pixel_values, prompt_pixel_values, prompt_masks), check_trace=False | |
| ) # when traced model is checked, an error is produced due to name mangling | |
| else: | |
| main_input = inputs[main_input_name] | |
| if model.config._attn_implementation == "sdpa": | |
| trace_input = {main_input_name: main_input} | |
| if "attention_mask" in inputs: | |
| trace_input["attention_mask"] = inputs["attention_mask"] | |
| else: | |
| self.skipTest("testing SDPA without attention_mask is not supported") | |
| model(main_input, attention_mask=inputs["attention_mask"]) | |
| # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1. | |
| traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input) | |
| else: | |
| model(main_input) | |
| traced_model = torch.jit.trace(model, (main_input,)) | |
| except RuntimeError: | |
| self.fail("Couldn't trace module.") | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
| try: | |
| torch.jit.save(traced_model, pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't save module.") | |
| try: | |
| loaded_model = torch.jit.load(pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't load module.") | |
| model.to(torch_device) | |
| model.eval() | |
| loaded_model.to(torch_device) | |
| loaded_model.eval() | |
| model_state_dict = model.state_dict() | |
| loaded_model_state_dict = loaded_model.state_dict() | |
| non_persistent_buffers = {} | |
| for key in loaded_model_state_dict.keys(): | |
| if key not in model_state_dict.keys(): | |
| non_persistent_buffers[key] = loaded_model_state_dict[key] | |
| loaded_model_state_dict = { | |
| key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers | |
| } | |
| self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
| model_buffers = list(model.buffers()) | |
| for non_persistent_buffer in non_persistent_buffers.values(): | |
| found_buffer = False | |
| for i, model_buffer in enumerate(model_buffers): | |
| if torch.equal(non_persistent_buffer, model_buffer): | |
| found_buffer = True | |
| break | |
| self.assertTrue(found_buffer) | |
| model_buffers.pop(i) | |
| models_equal = True | |
| for layer_name, p1 in model_state_dict.items(): | |
| if layer_name in loaded_model_state_dict: | |
| p2 = loaded_model_state_dict[layer_name] | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| self.assertTrue(models_equal) | |
| # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. | |
| # (Even with this call, there are still memory leak by ~0.04MB) | |
| self.clear_torch_jit_class_registry() | |
| def test_torch_fx(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| self._create_and_check_torch_fx_tracing(config, inputs_dict) | |
| def test_torch_fx_output_loss(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True) | |
| def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False): | |
| if not is_torch_fx_available() or not self.fx_compatible: | |
| self.skipTest( | |
| f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx" | |
| ) | |
| configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
| configs_no_init.return_dict = False | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| model.to(torch_device) | |
| model.eval() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss) | |
| # We may want to test several inputs (various shapes, etc.). | |
| inputs_to_test = [inputs] | |
| if model.config.is_encoder_decoder: | |
| model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward | |
| labels = inputs.get("labels", None) | |
| input_names = [ | |
| "attention_mask", | |
| "decoder_attention_mask", | |
| "decoder_input_ids", | |
| "input_features", | |
| "input_ids", | |
| "input_values", | |
| ] | |
| if labels is not None: | |
| input_names.append("labels") | |
| else: | |
| input_names = [ | |
| "attention_mask", | |
| "bbox", | |
| "input_features", | |
| "input_ids", | |
| "input_values", | |
| "pixel_values", | |
| "token_type_ids", | |
| "visual_feats", | |
| "visual_pos", | |
| ] | |
| labels = inputs.get("labels", None) | |
| start_positions = inputs.get("start_positions", None) | |
| end_positions = inputs.get("end_positions", None) | |
| if labels is not None: | |
| input_names.append("labels") | |
| if start_positions is not None: | |
| input_names.append("start_positions") | |
| if end_positions is not None: | |
| input_names.append("end_positions") | |
| if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE: | |
| input_names.append("past_key_values") | |
| # Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs. | |
| if "past_key_values" not in inputs: | |
| batch_size = inputs[next(iter(inputs))].shape[0] | |
| num_heads = model.config.num_attention_heads | |
| head_dim = model.config.hidden_size // model.config.num_attention_heads | |
| cache_shape = (batch_size, num_heads, 0, head_dim) | |
| empty_pkv = tuple( | |
| ( | |
| torch.rand(cache_shape, dtype=torch.float, device=torch_device), | |
| torch.rand(cache_shape, dtype=torch.float, device=torch_device), | |
| ) | |
| for i in range(model.config.num_hidden_layers) | |
| ) | |
| cache_length = 9 | |
| cache_shape = (batch_size, num_heads, cache_length, head_dim) | |
| non_empty_pkv = tuple( | |
| ( | |
| torch.rand(cache_shape, dtype=torch.float, device=torch_device), | |
| torch.rand(cache_shape, dtype=torch.float, device=torch_device), | |
| ) | |
| for i in range(model.config.num_hidden_layers) | |
| ) | |
| inps = copy.deepcopy(inputs_to_test[0]) | |
| inputs_to_test[0]["past_key_values"] = empty_pkv | |
| inps["past_key_values"] = non_empty_pkv | |
| inputs_to_test.append(inps) | |
| past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float) | |
| inputs_to_test[1]["attention_mask"] = torch.cat( | |
| (past_mask, inputs_to_test[1]["attention_mask"]), dim=1 | |
| ) | |
| for inps in inputs_to_test: | |
| filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names} | |
| input_names = list(filtered_inputs.keys()) | |
| if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and ( | |
| not hasattr(model.config, "problem_type") or model.config.problem_type is None | |
| ): | |
| model.config.problem_type = "single_label_classification" | |
| traced_model = symbolic_trace(model, input_names) | |
| with torch.no_grad(): | |
| traced_output = traced_model(**filtered_inputs) | |
| model_output = model(**filtered_inputs) | |
| def flatten_output(output): | |
| flatten = [] | |
| for x in output: | |
| if isinstance(x, (tuple, list)): | |
| flatten += flatten_output(x) | |
| elif not isinstance(x, torch.Tensor): | |
| continue | |
| else: | |
| flatten.append(x) | |
| return flatten | |
| model_output = flatten_output(model_output) | |
| traced_output = flatten_output(traced_output) | |
| num_outputs = len(model_output) | |
| for i in range(num_outputs): | |
| self.assertTrue( | |
| torch.allclose(model_output[i], traced_output[i]), | |
| f"traced {i}th output doesn't match model {i}th output for {model_class}", | |
| ) | |
| # Test that the model can be serialized and restored properly | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| pkl_file_name = os.path.join(tmp_dir_name, "model.pkl") | |
| try: | |
| with open(pkl_file_name, "wb") as f: | |
| pickle.dump(traced_model, f) | |
| with open(pkl_file_name, "rb") as f: | |
| loaded = pickle.load(f) | |
| except Exception as e: | |
| self.fail(f"Couldn't serialize / deserialize the traced model: {e}") | |
| loaded_output = loaded(**filtered_inputs) | |
| loaded_output = flatten_output(loaded_output) | |
| for i in range(num_outputs): | |
| self.assertTrue( | |
| torch.allclose(model_output[i], loaded_output[i]), | |
| f"serialized model {i}th output doesn't match model {i}th output for {model_class}", | |
| ) | |
| # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. | |
| # (Even with this call, there are still memory leak by ~0.04MB) | |
| self.clear_torch_jit_class_registry() | |
| def test_headmasking(self): | |
| if not self.test_head_masking: | |
| return | |
| global_rng.seed(42) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| global_rng.seed() | |
| inputs_dict["output_attentions"] = True | |
| config.output_hidden_states = True | |
| configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| model.to(torch_device) | |
| model.eval() | |
| # Prepare head_mask | |
| # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior) | |
| head_mask = torch.ones( | |
| self.model_tester.num_hidden_layers, | |
| self.model_tester.num_attention_heads, | |
| device=torch_device, | |
| ) | |
| head_mask[0, 0] = 0 | |
| head_mask[-1, :-1] = 0 | |
| head_mask.requires_grad_(requires_grad=True) | |
| inputs = self._prepare_for_class(inputs_dict, model_class).copy() | |
| inputs["head_mask"] = head_mask | |
| if model.config.is_encoder_decoder: | |
| signature = inspect.signature(model.forward) | |
| arg_names = [*signature.parameters.keys()] | |
| if "decoder_head_mask" in arg_names: # necessary diferentiation because of T5 model | |
| inputs["decoder_head_mask"] = head_mask | |
| if "cross_attn_head_mask" in arg_names: | |
| inputs["cross_attn_head_mask"] = head_mask | |
| outputs = model(**inputs, return_dict=True) | |
| # Test that we can get a gradient back for importance score computation | |
| output = sum(t.sum() for t in outputs[0]) | |
| output = output.sum() | |
| output.backward() | |
| multihead_outputs = head_mask.grad | |
| self.assertIsNotNone(multihead_outputs) | |
| self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers) | |
| def check_attentions_validity(attentions): | |
| # Remove Nan | |
| for t in attentions: | |
| self.assertLess( | |
| torch.sum(torch.isnan(t)), t.numel() / 4 | |
| ) # Check we don't have more than 25% nans (arbitrary) | |
| attentions = [ | |
| t.masked_fill(torch.isnan(t), 0.0) for t in attentions | |
| ] # remove them (the test is less complete) | |
| self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0) | |
| self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0) | |
| if len(attentions) > 2: # encoder-decoder models have only 2 layers in each module | |
| self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0) | |
| self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0) | |
| self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0) | |
| if model.config.is_encoder_decoder: | |
| check_attentions_validity(outputs.encoder_attentions) | |
| check_attentions_validity(outputs.decoder_attentions) | |
| check_attentions_validity(outputs.cross_attentions) | |
| else: | |
| check_attentions_validity(outputs.attentions) | |
| def test_head_pruning(self): | |
| if not self.test_pruning: | |
| return | |
| for model_class in self.all_model_classes: | |
| ( | |
| config, | |
| inputs_dict, | |
| ) = self.model_tester.prepare_config_and_inputs_for_common() | |
| if "head_mask" in inputs_dict: | |
| del inputs_dict["head_mask"] | |
| inputs_dict["output_attentions"] = True | |
| config.output_hidden_states = False | |
| model = model_class(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| heads_to_prune = { | |
| 0: list(range(1, self.model_tester.num_attention_heads)), | |
| -1: [0], | |
| } | |
| model.prune_heads(heads_to_prune) | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs[-1] | |
| self.assertEqual(attentions[0].shape[-3], 1) | |
| # TODO: To have this check, we will need at least 3 layers. Do we really need it? | |
| # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) | |
| self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) | |
| def test_head_pruning_save_load_from_pretrained(self): | |
| if not self.test_pruning: | |
| return | |
| for model_class in self.all_model_classes: | |
| ( | |
| config, | |
| inputs_dict, | |
| ) = self.model_tester.prepare_config_and_inputs_for_common() | |
| if "head_mask" in inputs_dict: | |
| del inputs_dict["head_mask"] | |
| inputs_dict["output_attentions"] = True | |
| config.output_hidden_states = False | |
| model = model_class(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| heads_to_prune = { | |
| 0: list(range(1, self.model_tester.num_attention_heads)), | |
| -1: [0], | |
| } | |
| model.prune_heads(heads_to_prune) | |
| with tempfile.TemporaryDirectory() as temp_dir_name: | |
| model.save_pretrained(temp_dir_name) | |
| model = model_class.from_pretrained(temp_dir_name) | |
| model.to(torch_device) | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs[-1] | |
| self.assertEqual(attentions[0].shape[-3], 1) | |
| # TODO: To have this check, we will need at least 3 layers. Do we really need it? | |
| # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) | |
| self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) | |
| def test_head_pruning_save_load_from_config_init(self): | |
| if not self.test_pruning: | |
| return | |
| for model_class in self.all_model_classes: | |
| ( | |
| config, | |
| inputs_dict, | |
| ) = self.model_tester.prepare_config_and_inputs_for_common() | |
| if "head_mask" in inputs_dict: | |
| del inputs_dict["head_mask"] | |
| inputs_dict["output_attentions"] = True | |
| config.output_hidden_states = False | |
| heads_to_prune = { | |
| 0: list(range(1, self.model_tester.num_attention_heads)), | |
| -1: [0], | |
| } | |
| config.pruned_heads = heads_to_prune | |
| model = model_class(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs[-1] | |
| self.assertEqual(attentions[0].shape[-3], 1) | |
| # TODO: To have this check, we will need at least 3 layers. Do we really need it? | |
| # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) | |
| self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) | |
| def test_head_pruning_integration(self): | |
| if not self.test_pruning: | |
| return | |
| for model_class in self.all_model_classes: | |
| ( | |
| config, | |
| inputs_dict, | |
| ) = self.model_tester.prepare_config_and_inputs_for_common() | |
| if "head_mask" in inputs_dict: | |
| del inputs_dict["head_mask"] | |
| inputs_dict["output_attentions"] = True | |
| config.output_hidden_states = False | |
| heads_to_prune = {1: [1, 2]} | |
| config.pruned_heads = heads_to_prune | |
| model = model_class(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs[-1] | |
| self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0) | |
| self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) | |
| with tempfile.TemporaryDirectory() as temp_dir_name: | |
| model.save_pretrained(temp_dir_name) | |
| model = model_class.from_pretrained(temp_dir_name) | |
| model.to(torch_device) | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs[-1] | |
| self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0) | |
| self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) | |
| heads_to_prune = {0: [0], 1: [1, 2]} | |
| model.prune_heads(heads_to_prune) | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs[-1] | |
| self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1) | |
| self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) | |
| self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]}) | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
| expected_num_layers = getattr( | |
| self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
| ) | |
| self.assertEqual(len(hidden_states), expected_num_layers) | |
| if hasattr(self.model_tester, "encoder_seq_length"): | |
| seq_length = self.model_tester.encoder_seq_length | |
| if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1: | |
| seq_length = seq_length * self.model_tester.chunk_length | |
| else: | |
| seq_length = self.model_tester.seq_length | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-2:]), | |
| [seq_length, self.model_tester.hidden_size], | |
| ) | |
| if config.is_encoder_decoder: | |
| hidden_states = outputs.decoder_hidden_states | |
| self.assertIsInstance(hidden_states, (list, tuple)) | |
| self.assertEqual(len(hidden_states), expected_num_layers) | |
| seq_len = getattr(self.model_tester, "seq_length", None) | |
| decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-2:]), | |
| [decoder_seq_length, self.model_tester.hidden_size], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| def test_retain_grad_hidden_states_attentions(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.output_hidden_states = True | |
| config.output_attentions = self.has_attentions | |
| # no need to test all models as different heads yield the same functionality | |
| model_class = self.all_model_classes[0] | |
| model = model_class(config) | |
| model.to(torch_device) | |
| inputs = self._prepare_for_class(inputs_dict, model_class) | |
| outputs = model(**inputs) | |
| output = outputs[0] | |
| if config.is_encoder_decoder: | |
| # Seq2Seq models | |
| encoder_hidden_states = outputs.encoder_hidden_states[0] | |
| encoder_hidden_states.retain_grad() | |
| decoder_hidden_states = outputs.decoder_hidden_states[0] | |
| decoder_hidden_states.retain_grad() | |
| if self.has_attentions: | |
| encoder_attentions = outputs.encoder_attentions[0] | |
| encoder_attentions.retain_grad() | |
| decoder_attentions = outputs.decoder_attentions[0] | |
| decoder_attentions.retain_grad() | |
| cross_attentions = outputs.cross_attentions[0] | |
| cross_attentions.retain_grad() | |
| output.flatten()[0].backward(retain_graph=True) | |
| self.assertIsNotNone(encoder_hidden_states.grad) | |
| self.assertIsNotNone(decoder_hidden_states.grad) | |
| if self.has_attentions: | |
| self.assertIsNotNone(encoder_attentions.grad) | |
| self.assertIsNotNone(decoder_attentions.grad) | |
| self.assertIsNotNone(cross_attentions.grad) | |
| else: | |
| # Encoder-/Decoder-only models | |
| hidden_states = outputs.hidden_states[0] | |
| hidden_states.retain_grad() | |
| if self.has_attentions: | |
| attentions = outputs.attentions[0] | |
| attentions.retain_grad() | |
| output.flatten()[0].backward(retain_graph=True) | |
| self.assertIsNotNone(hidden_states.grad) | |
| if self.has_attentions: | |
| self.assertIsNotNone(attentions.grad) | |
| def test_feed_forward_chunking(self): | |
| ( | |
| original_config, | |
| inputs_dict, | |
| ) = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| torch.manual_seed(0) | |
| config = copy.deepcopy(original_config) | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] | |
| torch.manual_seed(0) | |
| config.chunk_size_feed_forward = 1 | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] | |
| self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3)) | |
| def test_resize_position_vector_embeddings(self): | |
| if not self.test_resize_position_embeddings: | |
| return | |
| ( | |
| original_config, | |
| inputs_dict, | |
| ) = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| config = copy.deepcopy(original_config) | |
| model = model_class(config) | |
| model.to(torch_device) | |
| if self.model_tester.is_training is False: | |
| model.eval() | |
| max_position_embeddings = config.max_position_embeddings | |
| # Retrieve the embeddings and clone theme | |
| if model.config.is_encoder_decoder: | |
| encoder_model_embed, decoder_model_embed = model.get_position_embeddings() | |
| encoder_cloned_embeddings = encoder_model_embed.weight.clone() | |
| decoder_cloned_embeddings = decoder_model_embed.weight.clone() | |
| else: | |
| model_embed = model.get_position_embeddings() | |
| cloned_embeddings = model_embed.weight.clone() | |
| # Check that resizing the position embeddings with a larger max_position_embeddings increases | |
| # the model's postion embeddings size | |
| model.resize_position_embeddings(max_position_embeddings + 10) | |
| self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10) | |
| # Check that it actually resizes the embeddings matrix | |
| if model.config.is_encoder_decoder: | |
| encoder_model_embed, decoder_model_embed = model.get_position_embeddings() | |
| self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10) | |
| self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10) | |
| else: | |
| model_embed = model.get_position_embeddings() | |
| self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| model(**self._prepare_for_class(inputs_dict, model_class)) | |
| # Check that resizing the position embeddings with a smaller max_position_embeddings decreases | |
| # the model's max_position_embeddings | |
| model.resize_position_embeddings(max_position_embeddings - 5) | |
| self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5) | |
| # Check that it actually resizes the embeddings matrix | |
| if model.config.is_encoder_decoder: | |
| encoder_model_embed, decoder_model_embed = model.get_position_embeddings() | |
| self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5) | |
| self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5) | |
| else: | |
| model_embed = model.get_position_embeddings() | |
| self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| model(**self._prepare_for_class(inputs_dict, model_class)) | |
| # Check that adding and removing tokens has not modified the first part of the embedding matrix. | |
| models_equal = True | |
| if model.config.is_encoder_decoder: | |
| for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight): | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight): | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| else: | |
| for p1, p2 in zip(cloned_embeddings, model_embed.weight): | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| self.assertTrue(models_equal) | |
| def test_resize_tokens_embeddings(self): | |
| ( | |
| original_config, | |
| inputs_dict, | |
| ) = self.model_tester.prepare_config_and_inputs_for_common() | |
| if not self.test_resize_embeddings: | |
| return | |
| for model_class in self.all_model_classes: | |
| config = copy.deepcopy(original_config) | |
| model = model_class(config) | |
| model.to(torch_device) | |
| if self.model_tester.is_training is False: | |
| model.eval() | |
| model_vocab_size = config.vocab_size | |
| # Retrieve the embeddings and clone theme | |
| model_embed = model.resize_token_embeddings(model_vocab_size) | |
| cloned_embeddings = model_embed.weight.clone() | |
| # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
| model_embed = model.resize_token_embeddings(model_vocab_size + 10) | |
| self.assertEqual(model.config.vocab_size, model_vocab_size + 10) | |
| # Check that it actually resizes the embeddings matrix | |
| self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| model(**self._prepare_for_class(inputs_dict, model_class)) | |
| # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
| model_embed = model.resize_token_embeddings(model_vocab_size - 15) | |
| self.assertEqual(model.config.vocab_size, model_vocab_size - 15) | |
| # Check that it actually resizes the embeddings matrix | |
| self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| # Input ids should be clamped to the maximum size of the vocabulary | |
| inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
| # make sure that decoder_input_ids are resized as well | |
| if "decoder_input_ids" in inputs_dict: | |
| inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
| model(**self._prepare_for_class(inputs_dict, model_class)) | |
| # Check that adding and removing tokens has not modified the first part of the embedding matrix. | |
| models_equal = True | |
| for p1, p2 in zip(cloned_embeddings, model_embed.weight): | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| self.assertTrue(models_equal) | |
| config = copy.deepcopy(original_config) | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model_vocab_size = config.vocab_size | |
| model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1) | |
| self.assertTrue(model.config.vocab_size + 10, model_vocab_size) | |
| model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64) | |
| self.assertTrue(model_embed.weight.shape[0] // 64, 0) | |
| self.assertTrue(model_embed.weight.shape[0], model.config.vocab_size) | |
| self.assertTrue(model.config.vocab_size, model.vocab_size) | |
| model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64) | |
| self.assertTrue(model_embed.weight.shape[0] // 64, 0) | |
| # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size | |
| target_dimension = 128 | |
| model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64) | |
| self.assertTrue(model_embed.weight.shape[0], target_dimension) | |
| with self.assertRaisesRegex( | |
| ValueError, | |
| "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer", | |
| ): | |
| model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3) | |
| def test_resize_embeddings_untied(self): | |
| ( | |
| original_config, | |
| inputs_dict, | |
| ) = self.model_tester.prepare_config_and_inputs_for_common() | |
| if not self.test_resize_embeddings: | |
| return | |
| original_config.tie_word_embeddings = False | |
| # if model cannot untied embeddings -> leave test | |
| if original_config.tie_word_embeddings: | |
| return | |
| for model_class in self.all_model_classes: | |
| config = copy.deepcopy(original_config) | |
| model = model_class(config).to(torch_device) | |
| # if no output embeddings -> leave test | |
| if model.get_output_embeddings() is None: | |
| continue | |
| # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
| model_vocab_size = config.vocab_size | |
| model.resize_token_embeddings(model_vocab_size + 10) | |
| self.assertEqual(model.config.vocab_size, model_vocab_size + 10) | |
| output_embeds = model.get_output_embeddings() | |
| self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) | |
| # Check bias if present | |
| if output_embeds.bias is not None: | |
| self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| model(**self._prepare_for_class(inputs_dict, model_class)) | |
| # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
| model.resize_token_embeddings(model_vocab_size - 15) | |
| self.assertEqual(model.config.vocab_size, model_vocab_size - 15) | |
| # Check that it actually resizes the embeddings matrix | |
| output_embeds = model.get_output_embeddings() | |
| self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) | |
| # Check bias if present | |
| if output_embeds.bias is not None: | |
| self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| # Input ids should be clamped to the maximum size of the vocabulary | |
| inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
| if "decoder_input_ids" in inputs_dict: | |
| inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| model(**self._prepare_for_class(inputs_dict, model_class)) | |
| def test_model_common_attributes(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding)) | |
| model.set_input_embeddings(nn.Embedding(10, 10)) | |
| x = model.get_output_embeddings() | |
| self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
| def test_model_main_input_name(self): | |
| for model_class in self.all_model_classes: | |
| model_signature = inspect.signature(getattr(model_class, "forward")) | |
| # The main input is the name of the argument after `self` | |
| observed_main_input_name = list(model_signature.parameters.keys())[1] | |
| self.assertEqual(model_class.main_input_name, observed_main_input_name) | |
| def test_correct_missing_keys(self): | |
| if not self.test_missing_keys: | |
| return | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| base_model_prefix = model.base_model_prefix | |
| if hasattr(model, base_model_prefix): | |
| extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)} | |
| extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)}) | |
| # Some models define this as None | |
| if model._keys_to_ignore_on_load_missing: | |
| for key in model._keys_to_ignore_on_load_missing: | |
| extra_params.pop(key, None) | |
| if not extra_params: | |
| # In that case, we *are* on a head model, but every | |
| # single key is not actual parameters and this is | |
| # tested in `test_tied_model_weights_key_ignore` test. | |
| continue | |
| with tempfile.TemporaryDirectory() as temp_dir_name: | |
| model.base_model.save_pretrained(temp_dir_name) | |
| model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True) | |
| self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__) | |
| def test_tie_model_weights(self): | |
| if not self.test_torchscript: | |
| return | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| def check_same_values(layer_1, layer_2): | |
| equal = True | |
| for p1, p2 in zip(layer_1.weight, layer_2.weight): | |
| if p1.data.ne(p2.data).sum() > 0: | |
| equal = False | |
| return equal | |
| for model_class in self.all_model_classes: | |
| config.torchscript = True | |
| model_not_tied = model_class(config) | |
| if model_not_tied.get_output_embeddings() is None: | |
| continue | |
| config_tied = copy.deepcopy(config) | |
| config_tied.torchscript = False | |
| model_tied = model_class(config_tied) | |
| params_tied = list(model_tied.parameters()) | |
| # Check that the embedding layer and decoding layer are the same in size and in value | |
| # self.assertTrue(check_same_values(embeddings, decoding)) | |
| # Check that after resize they remain tied. | |
| model_tied.resize_token_embeddings(config.vocab_size + 10) | |
| params_tied_2 = list(model_tied.parameters()) | |
| self.assertEqual(len(params_tied_2), len(params_tied)) | |
| def test_can_use_safetensors(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model_tied = model_class(config) | |
| with tempfile.TemporaryDirectory() as d: | |
| try: | |
| model_tied.save_pretrained(d, safe_serialization=True) | |
| except Exception as e: | |
| raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}") | |
| model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True) | |
| # Checking the state dicts are correct | |
| reloaded_state = model_reloaded.state_dict() | |
| for k, v in model_tied.state_dict().items(): | |
| self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded") | |
| torch.testing.assert_close( | |
| v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}" | |
| ) | |
| # Checking there was no complain of missing weights | |
| self.assertEqual(infos["missing_keys"], []) | |
| # Checking the tensor sharing are correct | |
| ptrs = defaultdict(list) | |
| for k, v in model_tied.state_dict().items(): | |
| ptrs[v.data_ptr()].append(k) | |
| shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1} | |
| for _, shared_names in shared_ptrs.items(): | |
| reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names} | |
| self.assertEqual( | |
| len(reloaded_ptrs), | |
| 1, | |
| f"The shared pointers are incorrect, found different pointers for keys {shared_names}", | |
| ) | |
| def test_load_save_without_tied_weights(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.tie_word_embeddings = False | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as d: | |
| model.save_pretrained(d) | |
| model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True) | |
| # Checking the state dicts are correct | |
| reloaded_state = model_reloaded.state_dict() | |
| for k, v in model.state_dict().items(): | |
| self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded") | |
| torch.testing.assert_close( | |
| v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}" | |
| ) | |
| # Checking there was no complain of missing weights | |
| self.assertEqual(infos["missing_keys"], []) | |
| def test_tied_weights_keys(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.tie_word_embeddings = True | |
| for model_class in self.all_model_classes: | |
| model_tied = model_class(config) | |
| ptrs = collections.defaultdict(list) | |
| for name, tensor in model_tied.state_dict().items(): | |
| ptrs[id_tensor_storage(tensor)].append(name) | |
| # These are all the pointers of shared tensors. | |
| tied_params = [names for _, names in ptrs.items() if len(names) > 1] | |
| tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else [] | |
| # Detect we get a hit for each key | |
| for key in tied_weight_keys: | |
| is_tied_key = any(re.search(key, p) for group in tied_params for p in group) | |
| self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.") | |
| # Removed tied weights found from tied params -> there should only be one left after | |
| for key in tied_weight_keys: | |
| for i in range(len(tied_params)): | |
| tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None] | |
| tied_params = [group for group in tied_params if len(group) > 1] | |
| self.assertListEqual( | |
| tied_params, | |
| [], | |
| f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.", | |
| ) | |
| def test_model_weights_reload_no_missing_tied_weights(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| model.save_pretrained(tmp_dir) | |
| # We are nuking ALL weights on file, so every parameter should | |
| # yell on load. We're going to detect if we yell too much, or too little. | |
| placeholder_dict = {"tensor": torch.tensor([1, 2])} | |
| safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"}) | |
| model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True) | |
| prefix = f"{model_reloaded.base_model_prefix}." | |
| params = dict(model_reloaded.named_parameters()) | |
| params.update(dict(model_reloaded.named_buffers())) | |
| param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()} | |
| missing_keys = set(infos["missing_keys"]) | |
| extra_missing = missing_keys - param_names | |
| # Remove tied weights from extra missing: they are normally not warned as missing if their tied | |
| # counterpart is present but here there are no weights at all so we do get the warning. | |
| ptrs = collections.defaultdict(list) | |
| for name, tensor in model_reloaded.state_dict().items(): | |
| ptrs[id_tensor_storage(tensor)].append(name) | |
| tied_params = [names for _, names in ptrs.items() if len(names) > 1] | |
| for group in tied_params: | |
| group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group} | |
| # We remove the group from extra_missing if not all weights from group are in it | |
| if len(group - extra_missing) > 0: | |
| extra_missing = extra_missing - set(group) | |
| self.assertEqual( | |
| extra_missing, | |
| set(), | |
| f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. " | |
| f"For debugging, tied parameters are {tied_params}", | |
| ) | |
| missed_missing = param_names - missing_keys | |
| # Remove nonpersistent buffers from missed_missing | |
| buffers = [n for n, _ in model_reloaded.named_buffers()] | |
| nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()} | |
| nonpersistent_buffers = { | |
| k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers | |
| } | |
| missed_missing = missed_missing - nonpersistent_buffers | |
| if model_reloaded._keys_to_ignore_on_load_missing is None: | |
| expected_missing = set() | |
| else: | |
| expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing) | |
| self.assertEqual( | |
| missed_missing, | |
| expected_missing, | |
| f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real" | |
| " parameters. If they are non persistent buffers make sure to instantiate them with" | |
| " `persistent=False`", | |
| ) | |
| def test_model_outputs_equivalence(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| def set_nan_tensor_to_zero(t): | |
| t[t != t] = 0 | |
| return t | |
| def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): | |
| with torch.no_grad(): | |
| tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) | |
| dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() | |
| def recursive_check(tuple_object, dict_object): | |
| if isinstance(tuple_object, (List, Tuple)): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif isinstance(tuple_object, Dict): | |
| for tuple_iterable_value, dict_iterable_value in zip( | |
| tuple_object.values(), dict_object.values() | |
| ): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif tuple_object is None: | |
| return | |
| else: | |
| self.assertTrue( | |
| torch.allclose( | |
| set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 | |
| ), | |
| msg=( | |
| "Tuple and dict output are not equal. Difference:" | |
| f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
| f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" | |
| f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." | |
| ), | |
| ) | |
| recursive_check(tuple_output, dict_output) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| check_equivalence(model, tuple_inputs, dict_inputs) | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| check_equivalence(model, tuple_inputs, dict_inputs) | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) | |
| if self.has_attentions: | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) | |
| tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| check_equivalence( | |
| model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} | |
| ) | |
| # Don't copy this method to model specific test file! | |
| # TODO: remove this method once the issues are all fixed! | |
| def _make_attention_mask_non_null(self, inputs_dict): | |
| """Make sure no sequence has all zeros as attention mask""" | |
| for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]: | |
| if k in inputs_dict: | |
| attention_mask = inputs_dict[k] | |
| # Make sure no all 0s attention masks - to avoid failure at this moment. | |
| # Put `1` at the beginning of sequences to make it still work when combining causal attention masks. | |
| # TODO: remove this line once a fix regarding large negative values for attention mask is done. | |
| attention_mask = torch.cat( | |
| [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1 | |
| ) | |
| # Here we make the first sequence with all 0s as attention mask. | |
| # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative | |
| # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks. | |
| # TODO: enable this block once the large negative values thing is cleaned up. | |
| # (see https://github.com/huggingface/transformers/issues/14859) | |
| # attention_mask = torch.cat( | |
| # [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]], | |
| # dim=0 | |
| # ) | |
| inputs_dict[k] = attention_mask | |
| # Don't copy this method to model specific test file! | |
| # TODO: remove this method once the issues are all fixed! | |
| def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class): | |
| """For temporarily ignoring some failed test cases (issues to be fixed)""" | |
| tf_keys = {k for k, v in tf_outputs.items() if v is not None} | |
| pt_keys = {k for k, v in pt_outputs.items() if v is not None} | |
| key_differences = tf_keys.symmetric_difference(pt_keys) | |
| if model_class.__name__ in [ | |
| "FlaubertWithLMHeadModel", | |
| "FunnelForPreTraining", | |
| "ElectraForPreTraining", | |
| "XLMWithLMHeadModel", | |
| ]: | |
| for k in key_differences: | |
| if k in ["loss", "losses"]: | |
| tf_keys.discard(k) | |
| pt_keys.discard(k) | |
| elif model_class.__name__.startswith("GPT2"): | |
| # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple. | |
| tf_keys.discard("past_key_values") | |
| pt_keys.discard("past_key_values") | |
| # create new outputs from the remaining fields | |
| new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys}) | |
| new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys}) | |
| return new_tf_outputs, new_pt_outputs | |
| # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs | |
| def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): | |
| """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way. | |
| Args: | |
| model_class: The class of the model that is currently testing. For example, `TFBertModel`, | |
| TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative | |
| error messages. | |
| name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc. | |
| attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element | |
| being a named field in the output. | |
| """ | |
| self.assertEqual(type(name), str) | |
| if attributes is not None: | |
| self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") | |
| # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`). | |
| if isinstance(tf_outputs, ModelOutput): | |
| self.assertTrue( | |
| isinstance(pt_outputs, ModelOutput), | |
| f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is", | |
| ) | |
| # Don't copy this block to model specific test file! | |
| # TODO: remove this method and this line after issues are fixed | |
| tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class) | |
| tf_keys = [k for k, v in tf_outputs.items() if v is not None] | |
| pt_keys = [k for k, v in pt_outputs.items() if v is not None] | |
| self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch") | |
| # convert to the case of `tuple` | |
| # appending each key to the current (string) `name` | |
| attributes = tuple([f"{name}.{k}" for k in tf_keys]) | |
| self.check_pt_tf_outputs( | |
| tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes | |
| ) | |
| # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.) | |
| elif type(tf_outputs) in [tuple, list]: | |
| self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch") | |
| self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch") | |
| if attributes is not None: | |
| # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`) | |
| self.assertEqual( | |
| len(attributes), | |
| len(tf_outputs), | |
| f"{name}: The tuple `attributes` should have the same length as `tf_outputs`", | |
| ) | |
| else: | |
| # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name` | |
| attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))]) | |
| for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes): | |
| self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr) | |
| elif isinstance(tf_outputs, tf.Tensor): | |
| self.assertTrue( | |
| isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is" | |
| ) | |
| tf_outputs = tf_outputs.numpy() | |
| pt_outputs = pt_outputs.detach().to("cpu").numpy() | |
| self.assertEqual( | |
| tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch" | |
| ) | |
| # deal with NumPy's scalars to make replacing nan values by 0 work. | |
| if np.isscalar(tf_outputs): | |
| tf_outputs = np.array([tf_outputs]) | |
| pt_outputs = np.array([pt_outputs]) | |
| tf_nans = np.isnan(tf_outputs) | |
| pt_nans = np.isnan(pt_outputs) | |
| pt_outputs[tf_nans] = 0 | |
| tf_outputs[tf_nans] = 0 | |
| pt_outputs[pt_nans] = 0 | |
| tf_outputs[pt_nans] = 0 | |
| max_diff = np.amax(np.abs(tf_outputs - pt_outputs)) | |
| self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).") | |
| else: | |
| raise ValueError( | |
| "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got" | |
| f" {type(tf_outputs)} instead." | |
| ) | |
| def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict): | |
| tf_inputs_dict = {} | |
| for key, tensor in pt_inputs_dict.items(): | |
| # skip key that does not exist in tf | |
| if isinstance(tensor, bool): | |
| tf_inputs_dict[key] = tensor | |
| elif key == "input_values": | |
| tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) | |
| elif key == "pixel_values": | |
| tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) | |
| elif key == "input_features": | |
| tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) | |
| # other general float inputs | |
| elif tensor.is_floating_point(): | |
| tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) | |
| else: | |
| tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32) | |
| return tf_inputs_dict | |
| def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict): | |
| tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict) | |
| # send pytorch inputs to the correct device | |
| pt_inputs_dict = { | |
| k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items() | |
| } | |
| # send pytorch model to the correct device | |
| pt_model.to(torch_device) | |
| # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences | |
| pt_model.eval() | |
| with torch.no_grad(): | |
| pt_outputs = pt_model(**pt_inputs_dict) | |
| tf_outputs = tf_model(tf_inputs_dict) | |
| # tf models returned loss is usually a tensor rather than a scalar. | |
| # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`) | |
| # Change it here to a scalar to match PyTorch models' loss | |
| tf_loss = getattr(tf_outputs, "loss", None) | |
| if tf_loss is not None: | |
| tf_outputs.loss = tf.math.reduce_mean(tf_loss) | |
| self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model)) | |
| def test_pt_tf_model_equivalence(self, allow_missing_keys=False): | |
| import transformers | |
| for model_class in self.all_model_classes: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| tf_model_class_name = "TF" + model_class.__name__ # Add the "TF" at the beginning | |
| if not hasattr(transformers, tf_model_class_name): | |
| # transformers does not have this model in TF version yet | |
| return | |
| # Output all for aggressive testing | |
| config.output_hidden_states = True | |
| config.output_attentions = self.has_attentions | |
| # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency | |
| # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. | |
| # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. | |
| self._make_attention_mask_non_null(inputs_dict) | |
| tf_model_class = getattr(transformers, tf_model_class_name) | |
| pt_model = model_class(config) | |
| tf_model = tf_model_class(config) | |
| pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
| pt_inputs_dict_with_labels = self._prepare_for_class( | |
| inputs_dict, | |
| model_class, | |
| # Not all models accept "labels" in the forward pass (yet :) ) | |
| return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False, | |
| ) | |
| # make sure only tf inputs are forward that actually exist in function args | |
| tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys()) | |
| # remove all head masks | |
| tf_input_keys.discard("head_mask") | |
| tf_input_keys.discard("cross_attn_head_mask") | |
| tf_input_keys.discard("decoder_head_mask") | |
| pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys} | |
| pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys} | |
| # For some models (e.g. base models), there is no label returned. | |
| # Set the input dict to `None` to avoid check outputs twice for the same input dicts. | |
| if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()): | |
| pt_inputs_dict_with_labels = None | |
| # Check we can load pt model in tf and vice-versa with model => model functions | |
| # Here requires `tf_inputs_dict` to build `tf_model` | |
| tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict) | |
| tf_model = transformers.load_pytorch_model_in_tf2_model( | |
| tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys | |
| ) | |
| pt_model = transformers.load_tf2_model_in_pytorch_model( | |
| pt_model, tf_model, allow_missing_keys=allow_missing_keys | |
| ) | |
| # Original test: check without `labels` | |
| self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict) | |
| # check with `labels` | |
| if pt_inputs_dict_with_labels: | |
| self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels) | |
| # Check we can load pt model in tf and vice-versa with checkpoint => model functions | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") | |
| torch.save(pt_model.state_dict(), pt_checkpoint_path) | |
| tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( | |
| tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys | |
| ) | |
| tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") | |
| tf_model.save_weights(tf_checkpoint_path) | |
| pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( | |
| pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys | |
| ) | |
| # Original test: check without `labels` | |
| self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict) | |
| # check with `labels` | |
| if pt_inputs_dict_with_labels: | |
| self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels) | |
| def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float): | |
| diff = np.abs((a - b)).max() | |
| self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).") | |
| def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): | |
| """ | |
| Args: | |
| model_class: The class of the model that is currently testing. For example, ..., etc. | |
| Currently unused, but it could make debugging easier and faster. | |
| names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs. | |
| Currently unused, but in the future, we could use this information to make the error message clearer | |
| by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax. | |
| """ | |
| self.assertEqual(type(name), str) | |
| if attributes is not None: | |
| self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") | |
| # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`). | |
| if isinstance(fx_outputs, ModelOutput): | |
| self.assertTrue( | |
| isinstance(pt_outputs, ModelOutput), | |
| f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is", | |
| ) | |
| fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) | |
| pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) | |
| self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch") | |
| # convert to the case of `tuple` | |
| # appending each key to the current (string) `name` | |
| attributes = tuple([f"{name}.{k}" for k in fx_keys]) | |
| self.check_pt_flax_outputs( | |
| fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes | |
| ) | |
| # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.) | |
| elif type(fx_outputs) in [tuple, list]: | |
| self.assertEqual( | |
| type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch" | |
| ) | |
| self.assertEqual( | |
| len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch" | |
| ) | |
| if attributes is not None: | |
| # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`) | |
| self.assertEqual( | |
| len(attributes), | |
| len(fx_outputs), | |
| f"{name}: The tuple `attributes` should have the same length as `fx_outputs`", | |
| ) | |
| else: | |
| # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name` | |
| attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))]) | |
| for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes): | |
| self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr) | |
| elif isinstance(fx_outputs, jnp.ndarray): | |
| self.assertTrue( | |
| isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is" | |
| ) | |
| # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`. | |
| fx_outputs = np.array(fx_outputs) | |
| pt_outputs = pt_outputs.detach().to("cpu").numpy() | |
| self.assertEqual( | |
| fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch" | |
| ) | |
| # deal with NumPy's scalars to make replacing nan values by 0 work. | |
| if np.isscalar(fx_outputs): | |
| fx_outputs = np.array([fx_outputs]) | |
| pt_outputs = np.array([pt_outputs]) | |
| fx_nans = np.isnan(fx_outputs) | |
| pt_nans = np.isnan(pt_outputs) | |
| pt_outputs[fx_nans] = 0 | |
| fx_outputs[fx_nans] = 0 | |
| pt_outputs[pt_nans] = 0 | |
| fx_outputs[pt_nans] = 0 | |
| max_diff = np.amax(np.abs(fx_outputs - pt_outputs)) | |
| self.assertLessEqual( | |
| max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})." | |
| ) | |
| else: | |
| raise ValueError( | |
| "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got" | |
| f" {type(fx_outputs)} instead." | |
| ) | |
| def test_equivalence_pt_to_flax(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| with self.subTest(model_class.__name__): | |
| fx_model_class_name = "Flax" + model_class.__name__ | |
| if not hasattr(transformers, fx_model_class_name): | |
| # no flax model exists for this class | |
| return | |
| # Output all for aggressive testing | |
| config.output_hidden_states = True | |
| config.output_attentions = self.has_attentions | |
| fx_model_class = getattr(transformers, fx_model_class_name) | |
| # load PyTorch class | |
| pt_model = model_class(config).eval() | |
| # Flax models don't use the `use_cache` option and cache is not returned as a default. | |
| # So we disable `use_cache` here for PyTorch model. | |
| pt_model.config.use_cache = False | |
| # load Flax class | |
| fx_model = fx_model_class(config, dtype=jnp.float32) | |
| # make sure only flax inputs are forward that actually exist in function args | |
| fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() | |
| # prepare inputs | |
| pt_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| # remove function args that don't exist in Flax | |
| pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} | |
| # send pytorch inputs to the correct device | |
| pt_inputs = { | |
| k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items() | |
| } | |
| # convert inputs to Flax | |
| fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} | |
| fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) | |
| fx_model.params = fx_state | |
| # send pytorch model to the correct device | |
| pt_model.to(torch_device) | |
| with torch.no_grad(): | |
| pt_outputs = pt_model(**pt_inputs) | |
| fx_outputs = fx_model(**fx_inputs) | |
| fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) | |
| pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) | |
| self.assertEqual(fx_keys, pt_keys) | |
| self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| pt_model.save_pretrained(tmpdirname) | |
| fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True) | |
| fx_outputs_loaded = fx_model_loaded(**fx_inputs) | |
| fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None]) | |
| pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) | |
| self.assertEqual(fx_keys, pt_keys) | |
| self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class) | |
| def test_equivalence_flax_to_pt(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| with self.subTest(model_class.__name__): | |
| fx_model_class_name = "Flax" + model_class.__name__ | |
| if not hasattr(transformers, fx_model_class_name): | |
| # no flax model exists for this class | |
| return | |
| # Output all for aggressive testing | |
| config.output_hidden_states = True | |
| config.output_attentions = self.has_attentions | |
| fx_model_class = getattr(transformers, fx_model_class_name) | |
| # load PyTorch class | |
| pt_model = model_class(config).eval() | |
| # Flax models don't use the `use_cache` option and cache is not returned as a default. | |
| # So we disable `use_cache` here for PyTorch model. | |
| pt_model.config.use_cache = False | |
| # load Flax class | |
| fx_model = fx_model_class(config, dtype=jnp.float32) | |
| # make sure only flax inputs are forward that actually exist in function args | |
| fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() | |
| # prepare inputs | |
| pt_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| # remove function args that don't exist in Flax | |
| pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} | |
| # send pytorch inputs to the correct device | |
| pt_inputs = { | |
| k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items() | |
| } | |
| # convert inputs to Flax | |
| fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} | |
| pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) | |
| # make sure weights are tied in PyTorch | |
| pt_model.tie_weights() | |
| # send pytorch model to the correct device | |
| pt_model.to(torch_device) | |
| with torch.no_grad(): | |
| pt_outputs = pt_model(**pt_inputs) | |
| fx_outputs = fx_model(**fx_inputs) | |
| fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) | |
| pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) | |
| self.assertEqual(fx_keys, pt_keys) | |
| self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| fx_model.save_pretrained(tmpdirname) | |
| pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True) | |
| # send pytorch model to the correct device | |
| pt_model_loaded.to(torch_device) | |
| pt_model_loaded.eval() | |
| with torch.no_grad(): | |
| pt_outputs_loaded = pt_model_loaded(**pt_inputs) | |
| fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) | |
| pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None]) | |
| self.assertEqual(fx_keys, pt_keys) | |
| self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class) | |
| def test_inputs_embeds(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
| if not self.is_encoder_decoder: | |
| input_ids = inputs["input_ids"] | |
| del inputs["input_ids"] | |
| else: | |
| encoder_input_ids = inputs["input_ids"] | |
| decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) | |
| del inputs["input_ids"] | |
| inputs.pop("decoder_input_ids", None) | |
| wte = model.get_input_embeddings() | |
| if not self.is_encoder_decoder: | |
| inputs["inputs_embeds"] = wte(input_ids) | |
| else: | |
| inputs["inputs_embeds"] = wte(encoder_input_ids) | |
| inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) | |
| with torch.no_grad(): | |
| model(**inputs)[0] | |
| def test_multi_gpu_data_parallel_forward(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| # some params shouldn't be scattered by nn.DataParallel | |
| # so just remove them if they are present. | |
| blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"] | |
| for k in blacklist_non_batched_params: | |
| inputs_dict.pop(k, None) | |
| # move input tensors to cuda:O | |
| for k, v in inputs_dict.items(): | |
| if torch.is_tensor(v): | |
| inputs_dict[k] = v.to(0) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=config) | |
| model.to(0) | |
| model.eval() | |
| # Wrap model in nn.DataParallel | |
| model = nn.DataParallel(model) | |
| with torch.no_grad(): | |
| _ = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| def test_model_parallelization(self): | |
| if not self.test_model_parallel: | |
| return | |
| # a candidate for testing_utils | |
| def get_current_gpu_memory_use(): | |
| """returns a list of cuda memory allocations per GPU in MBs""" | |
| per_device_memory = [] | |
| for id in range(torch.cuda.device_count()): | |
| with torch.cuda.device(id): | |
| per_device_memory.append(torch.cuda.memory_allocated() >> 20) | |
| return per_device_memory | |
| # Needs a large model to see the difference. | |
| config = self.model_tester.get_large_model_config() | |
| for model_class in self.all_parallelizable_model_classes: | |
| torch.cuda.empty_cache() | |
| # 1. single gpu memory load + unload + memory measurements | |
| # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests) | |
| memory_at_start = get_current_gpu_memory_use() | |
| # Put model on device 0 and take a memory snapshot | |
| model = model_class(config) | |
| model.to("cuda:0") | |
| memory_after_model_load = get_current_gpu_memory_use() | |
| # The memory use on device 0 should be higher than it was initially. | |
| self.assertGreater(memory_after_model_load[0], memory_at_start[0]) | |
| del model | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| # 2. MP test | |
| # it's essential to re-calibrate the usage before the next stage | |
| memory_at_start = get_current_gpu_memory_use() | |
| # Spread model layers over multiple devices | |
| model = model_class(config) | |
| model.parallelize() | |
| memory_after_parallelization = get_current_gpu_memory_use() | |
| # Assert that the memory use on all devices is higher than it was when loaded only on CPU | |
| for n in range(len(model.device_map.keys())): | |
| self.assertGreater(memory_after_parallelization[n], memory_at_start[n]) | |
| # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it | |
| self.assertLess(memory_after_parallelization[0], memory_after_model_load[0]) | |
| # Assert that the memory use of device 1 is higher than it was when the entire model was loaded | |
| # on device 0 and device 1 wasn't used at all | |
| self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1]) | |
| del model | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_model_parallel_equal_results(self): | |
| if not self.test_model_parallel: | |
| return | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_parallelizable_model_classes: | |
| inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
| def cast_to_device(dictionary, device): | |
| output = {} | |
| for k, v in dictionary.items(): | |
| if isinstance(v, torch.Tensor): | |
| output[k] = v.to(device) | |
| else: | |
| output[k] = v | |
| return output | |
| model = model_class(config) | |
| output = model(**cast_to_device(inputs_dict, "cpu")) | |
| model.parallelize() | |
| parallel_output = model(**cast_to_device(inputs_dict, "cuda:0")) | |
| for value, parallel_value in zip(output, parallel_output): | |
| if isinstance(value, torch.Tensor): | |
| self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7)) | |
| elif isinstance(value, (Tuple, List)): | |
| for value_, parallel_value_ in zip(value, parallel_value): | |
| self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7)) | |
| def check_device_map_is_respected(self, model, device_map): | |
| for param_name, param in model.named_parameters(): | |
| # Find device in device_map | |
| while len(param_name) > 0 and param_name not in device_map: | |
| param_name = ".".join(param_name.split(".")[:-1]) | |
| if param_name not in device_map: | |
| raise ValueError("device map is incomplete, it does not contain any device for `param_name`.") | |
| param_device = device_map[param_name] | |
| if param_device in ["cpu", "disk"]: | |
| self.assertEqual(param.device, torch.device("meta")) | |
| else: | |
| self.assertEqual(param.device, torch.device(param_device)) | |
| def test_disk_offload_bin(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| if model_class._no_split_modules is None: | |
| continue | |
| inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) | |
| model = model_class(config).eval() | |
| model = model.to(torch_device) | |
| torch.manual_seed(0) | |
| base_output = model(**inputs_dict_class) | |
| model_size = compute_module_sizes(model)[""] | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| model.cpu().save_pretrained(tmp_dir, safe_serialization=False) | |
| with self.assertRaises(ValueError): | |
| max_size = int(self.model_split_percents[0] * model_size) | |
| max_memory = {0: max_size, "cpu": max_size} | |
| # This errors out cause it's missing an offload folder | |
| new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) | |
| max_size = int(self.model_split_percents[1] * model_size) | |
| max_memory = {0: max_size, "cpu": max_size} | |
| new_model = model_class.from_pretrained( | |
| tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir | |
| ) | |
| self.check_device_map_is_respected(new_model, new_model.hf_device_map) | |
| torch.manual_seed(0) | |
| new_output = new_model(**inputs_dict_class) | |
| if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple): | |
| self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0])) | |
| else: | |
| self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) | |
| def test_disk_offload_safetensors(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| if model_class._no_split_modules is None: | |
| continue | |
| inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) | |
| model = model_class(config).eval() | |
| model = model.to(torch_device) | |
| torch.manual_seed(0) | |
| base_output = model(**inputs_dict_class) | |
| model_size = compute_module_sizes(model)[""] | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| model.cpu().save_pretrained(tmp_dir) | |
| max_size = int(self.model_split_percents[1] * model_size) | |
| max_memory = {0: max_size, "cpu": max_size} | |
| # This doesn't error out as it's in safetensors and doesn't need an offload folder | |
| new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) | |
| self.check_device_map_is_respected(new_model, new_model.hf_device_map) | |
| torch.manual_seed(0) | |
| new_output = new_model(**inputs_dict_class) | |
| if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple): | |
| self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0])) | |
| else: | |
| self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) | |
| def test_cpu_offload(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| if model_class._no_split_modules is None: | |
| continue | |
| inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) | |
| model = model_class(config).eval() | |
| model = model.to(torch_device) | |
| torch.manual_seed(0) | |
| base_output = model(**inputs_dict_class) | |
| model_size = compute_module_sizes(model)[""] | |
| # We test several splits of sizes to make sure it works. | |
| max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]] | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| model.cpu().save_pretrained(tmp_dir) | |
| for max_size in max_gpu_sizes: | |
| max_memory = {0: max_size, "cpu": model_size * 2} | |
| new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) | |
| # Making sure part of the model will actually end up offloaded | |
| self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"}) | |
| self.check_device_map_is_respected(new_model, new_model.hf_device_map) | |
| torch.manual_seed(0) | |
| new_output = new_model(**inputs_dict_class) | |
| if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple): | |
| self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0])) | |
| else: | |
| self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) | |
| def test_model_parallelism(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| if model_class._no_split_modules is None: | |
| continue | |
| inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) | |
| model = model_class(config).eval() | |
| model = model.to(torch_device) | |
| torch.manual_seed(0) | |
| base_output = model(**inputs_dict_class) | |
| model_size = compute_module_sizes(model)[""] | |
| # We test several splits of sizes to make sure it works. | |
| max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]] | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| model.cpu().save_pretrained(tmp_dir) | |
| for max_size in max_gpu_sizes: | |
| max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2} | |
| new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) | |
| # Making sure part of the model will actually end up offloaded | |
| self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1}) | |
| self.check_device_map_is_respected(new_model, new_model.hf_device_map) | |
| torch.manual_seed(0) | |
| new_output = new_model(**inputs_dict_class) | |
| if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple): | |
| self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0])) | |
| else: | |
| self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) | |
| def test_problem_types(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| problem_types = [ | |
| {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, | |
| {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, | |
| {"title": "regression", "num_labels": 1, "dtype": torch.float}, | |
| ] | |
| for model_class in self.all_model_classes: | |
| if model_class.__name__ not in [ | |
| *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES), | |
| ]: | |
| continue | |
| for problem_type in problem_types: | |
| with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): | |
| config.problem_type = problem_type["title"] | |
| config.num_labels = problem_type["num_labels"] | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| if problem_type["num_labels"] > 1: | |
| inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) | |
| inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) | |
| # This tests that we do not trigger the warning form PyTorch "Using a target size that is different | |
| # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure | |
| # they have the same size." which is a symptom something in wrong for the regression problem. | |
| # See https://github.com/huggingface/transformers/issues/11780 | |
| with warnings.catch_warnings(record=True) as warning_list: | |
| loss = model(**inputs).loss | |
| for w in warning_list: | |
| if "Using a target size that is different to the input size" in str(w.message): | |
| raise ValueError( | |
| f"Something is going wrong in the regression problem: intercepted {w.message}" | |
| ) | |
| loss.backward() | |
| def test_load_with_mismatched_shapes(self): | |
| if not self.test_mismatched_shapes: | |
| return | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES): | |
| continue | |
| with self.subTest(msg=f"Testing {model_class}"): | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| model = model_class(config) | |
| model.save_pretrained(tmp_dir) | |
| # Fails when we don't set ignore_mismatched_sizes=True | |
| with self.assertRaises(RuntimeError): | |
| new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) | |
| with self.assertRaises(RuntimeError): | |
| new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10) | |
| logger = logging.get_logger("transformers.modeling_utils") | |
| with CaptureLogger(logger) as cl: | |
| new_model = AutoModelForSequenceClassification.from_pretrained( | |
| tmp_dir, num_labels=42, ignore_mismatched_sizes=True | |
| ) | |
| self.assertIn("the shapes did not match", cl.out) | |
| new_model.to(torch_device) | |
| inputs = self._prepare_for_class(inputs_dict, model_class) | |
| logits = new_model(**inputs).logits | |
| self.assertEqual(logits.shape[1], 42) | |
| with CaptureLogger(logger) as cl: | |
| new_model_without_prefix = AutoModel.from_pretrained( | |
| tmp_dir, vocab_size=10, ignore_mismatched_sizes=True | |
| ) | |
| self.assertIn("the shapes did not match", cl.out) | |
| input_ids = ids_tensor((2, 8), 10) | |
| new_model_without_prefix.to(torch_device) | |
| if self.is_encoder_decoder: | |
| new_model_without_prefix(input_ids, decoder_input_ids=input_ids) | |
| else: | |
| new_model_without_prefix(input_ids) | |
| def test_mismatched_shapes_have_properly_initialized_weights(self): | |
| if not self.test_mismatched_shapes: | |
| return | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES): | |
| continue | |
| with self.subTest(msg=f"Testing {model_class}"): | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| model = model_class(configs_no_init) | |
| model.save_pretrained(tmp_dir) | |
| # Fails when we don't set ignore_mismatched_sizes=True | |
| with self.assertRaises(RuntimeError): | |
| new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) | |
| logger = logging.get_logger("transformers.modeling_utils") | |
| with CaptureLogger(logger) as cl: | |
| new_model = AutoModelForSequenceClassification.from_pretrained( | |
| tmp_dir, num_labels=42, ignore_mismatched_sizes=True | |
| ) | |
| self.assertIn("the shapes did not match", cl.out) | |
| for name, param in new_model.named_parameters(): | |
| if param.requires_grad: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self): | |
| # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__ | |
| class MyClass(PreTrainedModel): | |
| config_class = PretrainedConfig | |
| def __init__(self, config=None): | |
| super().__init__(config if config is not None else PretrainedConfig()) | |
| self.linear = nn.Linear(10, config.num_labels, bias=True) | |
| self.embedding = nn.Embedding(10, 10) | |
| self.std = 1 | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5)) | |
| if module.bias is not None: | |
| module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std) | |
| # Used to make sure the weights with matched shape are loaded correctly | |
| config = PretrainedConfig() | |
| config.num_labels = 3 | |
| model = MyClass(config=config) | |
| # Used to make sure the weights with mismatched shape are properly initialized | |
| set_seed(0) | |
| config = PretrainedConfig() | |
| config.num_labels = 4 | |
| # not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the | |
| # same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below | |
| # for `linear` part. | |
| with ContextManagers([no_init_weights(True)]): | |
| target_model = MyClass(config=config) | |
| target_model.apply(target_model._initialize_weights) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| state_dict = model.state_dict() | |
| del state_dict["linear.weight"] | |
| model.config.save_pretrained(tmpdirname) | |
| torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) | |
| set_seed(0) | |
| new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True) | |
| for key in new_model.state_dict().keys(): | |
| # check weight values for weights with matched shapes are identical | |
| # (i.e. correctly loaded from the checkpoint) | |
| if key not in ["linear.weight", "linear.bias"]: | |
| max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key])) | |
| self.assertLessEqual( | |
| max_diff.item(), | |
| 1e-6, | |
| msg=f"the weight values for `{key}` in `new_model` and `model` are not identical", | |
| ) | |
| else: | |
| # check we have some mismatched shapes | |
| self.assertNotEqual( | |
| model.state_dict()[key].shape, | |
| new_model.state_dict()[key].shape, | |
| msg=f"the weight shapes for {key} in `model` and `new_model` should differ", | |
| ) | |
| # check the weights with mismatched shape are properly initialized | |
| max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key])) | |
| self.assertLessEqual( | |
| max_diff.item(), | |
| 1e-6, | |
| msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical", | |
| ) | |
| def test_model_is_small(self): | |
| # Just a consistency check to make sure we are not running tests on 80M parameter models. | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| num_params = model.num_parameters() | |
| assert ( | |
| num_params < 1000000 | |
| ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max." | |
| def test_flash_attn_2_conversion(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| if not model_class._supports_flash_attn_2: | |
| self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model = model_class.from_pretrained( | |
| tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2" | |
| ).to(torch_device) | |
| for _, module in model.named_modules(): | |
| if "FlashAttention" in module.__class__.__name__: | |
| return | |
| self.assertTrue(False, "FlashAttention2 modules not found in model") | |
| def test_flash_attn_2_inference_equivalence(self): | |
| for model_class in self.all_model_classes: | |
| if not model_class._supports_flash_attn_2: | |
| self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model_fa = model_class.from_pretrained( | |
| tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" | |
| ) | |
| model_fa.to(torch_device) | |
| model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16) | |
| model.to(torch_device) | |
| dummy_input = inputs_dict[model.main_input_name][:1] | |
| if dummy_input.dtype in [torch.float32, torch.float16]: | |
| dummy_input = dummy_input.to(torch.bfloat16) | |
| dummy_attention_mask = inputs_dict.get("attention_mask", None) | |
| if dummy_attention_mask is not None: | |
| dummy_attention_mask = dummy_attention_mask[:1] | |
| dummy_attention_mask[:, 1:] = 1 | |
| dummy_attention_mask[:, :1] = 0 | |
| if model.config.is_encoder_decoder: | |
| decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1] | |
| outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) | |
| outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) | |
| else: | |
| outputs = model(dummy_input, output_hidden_states=True) | |
| outputs_fa = model_fa(dummy_input, output_hidden_states=True) | |
| logits = ( | |
| outputs.hidden_states[-1] | |
| if not model.config.is_encoder_decoder | |
| else outputs.decoder_hidden_states[-1] | |
| ) | |
| logits_fa = ( | |
| outputs_fa.hidden_states[-1] | |
| if not model.config.is_encoder_decoder | |
| else outputs_fa.decoder_hidden_states[-1] | |
| ) | |
| assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2) | |
| if model.config.is_encoder_decoder: | |
| other_inputs = { | |
| "decoder_input_ids": decoder_input_ids, | |
| "decoder_attention_mask": dummy_attention_mask, | |
| "output_hidden_states": True, | |
| } | |
| if dummy_attention_mask is not None: | |
| other_inputs["attention_mask"] = dummy_attention_mask | |
| outputs = model(dummy_input, **other_inputs) | |
| outputs_fa = model_fa(dummy_input, **other_inputs) | |
| else: | |
| other_inputs = { | |
| "output_hidden_states": True, | |
| } | |
| if dummy_attention_mask is not None: | |
| other_inputs["attention_mask"] = dummy_attention_mask | |
| outputs = model(dummy_input, **other_inputs) | |
| outputs_fa = model_fa(dummy_input, **other_inputs) | |
| logits = ( | |
| outputs.hidden_states[-1] | |
| if not model.config.is_encoder_decoder | |
| else outputs.decoder_hidden_states[-1] | |
| ) | |
| logits_fa = ( | |
| outputs_fa.hidden_states[-1] | |
| if not model.config.is_encoder_decoder | |
| else outputs_fa.decoder_hidden_states[-1] | |
| ) | |
| assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2) | |
| # check with inference + dropout | |
| model.train() | |
| _ = model_fa(dummy_input, **other_inputs) | |
| def test_flash_attn_2_inference_equivalence_right_padding(self): | |
| for model_class in self.all_model_classes: | |
| if not model_class._supports_flash_attn_2: | |
| self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model_fa = model_class.from_pretrained( | |
| tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" | |
| ) | |
| model_fa.to(torch_device) | |
| model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16) | |
| model.to(torch_device) | |
| dummy_input = inputs_dict[model.main_input_name][:1] | |
| if dummy_input.dtype in [torch.float32, torch.float16]: | |
| dummy_input = dummy_input.to(torch.bfloat16) | |
| dummy_attention_mask = inputs_dict.get("attention_mask", None) | |
| if dummy_attention_mask is not None: | |
| dummy_attention_mask = dummy_attention_mask[:1] | |
| dummy_attention_mask[:, :-1] = 1 | |
| dummy_attention_mask[:, -1:] = 0 | |
| if model.config.is_encoder_decoder: | |
| decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1] | |
| outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) | |
| outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) | |
| else: | |
| outputs = model(dummy_input, output_hidden_states=True) | |
| outputs_fa = model_fa(dummy_input, output_hidden_states=True) | |
| logits = ( | |
| outputs.hidden_states[-1] | |
| if not model.config.is_encoder_decoder | |
| else outputs.decoder_hidden_states[-1] | |
| ) | |
| logits_fa = ( | |
| outputs_fa.hidden_states[-1] | |
| if not model.config.is_encoder_decoder | |
| else outputs_fa.decoder_hidden_states[-1] | |
| ) | |
| assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2) | |
| if model.config.is_encoder_decoder: | |
| other_inputs = { | |
| "decoder_input_ids": decoder_input_ids, | |
| "decoder_attention_mask": dummy_attention_mask, | |
| "output_hidden_states": True, | |
| } | |
| if dummy_attention_mask is not None: | |
| other_inputs["attention_mask"] = dummy_attention_mask | |
| outputs = model(dummy_input, **other_inputs) | |
| outputs_fa = model_fa(dummy_input, **other_inputs) | |
| else: | |
| other_inputs = { | |
| "output_hidden_states": True, | |
| } | |
| if dummy_attention_mask is not None: | |
| other_inputs["attention_mask"] = dummy_attention_mask | |
| outputs = model(dummy_input, **other_inputs) | |
| outputs_fa = model_fa(dummy_input, **other_inputs) | |
| logits = ( | |
| outputs.hidden_states[-1] | |
| if not model.config.is_encoder_decoder | |
| else outputs.decoder_hidden_states[-1] | |
| ) | |
| logits_fa = ( | |
| outputs_fa.hidden_states[-1] | |
| if not model.config.is_encoder_decoder | |
| else outputs_fa.decoder_hidden_states[-1] | |
| ) | |
| assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2) | |
| def test_flash_attn_2_generate_left_padding(self): | |
| for model_class in self.all_generative_model_classes: | |
| if not model_class._supports_flash_attn_2: | |
| self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to( | |
| torch_device | |
| ) | |
| dummy_input = inputs_dict[model.main_input_name] | |
| if dummy_input.dtype in [torch.float32, torch.bfloat16]: | |
| dummy_input = dummy_input.to(torch.float16) | |
| dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) | |
| # make sure we do left padding | |
| dummy_attention_mask[:, :-1] = 0 | |
| dummy_attention_mask[:, -1:] = 1 | |
| out = model.generate( | |
| dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False | |
| ) | |
| model = model_class.from_pretrained( | |
| tmpdirname, | |
| torch_dtype=torch.float16, | |
| attn_implementation="flash_attention_2", | |
| low_cpu_mem_usage=True, | |
| ).to(torch_device) | |
| out_fa = model.generate( | |
| dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False | |
| ) | |
| self.assertTrue(torch.allclose(out, out_fa)) | |
| def test_flash_attn_2_generate_padding_right(self): | |
| for model_class in self.all_generative_model_classes: | |
| if not model_class._supports_flash_attn_2: | |
| self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to( | |
| torch_device | |
| ) | |
| dummy_input = inputs_dict[model.main_input_name] | |
| if dummy_input.dtype in [torch.float32, torch.bfloat16]: | |
| dummy_input = dummy_input.to(torch.float16) | |
| dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) | |
| # make sure we do right padding | |
| dummy_attention_mask[:, :-1] = 1 | |
| dummy_attention_mask[:, -1:] = 0 | |
| out = model.generate( | |
| dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False | |
| ) | |
| model = model_class.from_pretrained( | |
| tmpdirname, | |
| torch_dtype=torch.float16, | |
| attn_implementation="flash_attention_2", | |
| low_cpu_mem_usage=True, | |
| ).to(torch_device) | |
| out_fa = model.generate( | |
| dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False | |
| ) | |
| self.assertTrue(torch.allclose(out, out_fa)) | |
| def test_eager_matches_sdpa_inference(self, torch_dtype: str): | |
| if not self.all_model_classes[0]._supports_sdpa: | |
| self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA") | |
| if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device): | |
| self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)") | |
| if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device): | |
| self.skipTest( | |
| f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)" | |
| ) | |
| # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead. | |
| if torch_dtype == "float16": | |
| torch_dtype = torch.float16 | |
| elif torch_dtype == "bfloat16": | |
| torch_dtype = torch.bfloat16 | |
| elif torch_dtype == "float32": | |
| torch_dtype = torch.float32 | |
| atols = { | |
| ("cpu", False, torch.float32): 1e-6, | |
| ("cpu", False, torch.bfloat16): 1e-2, | |
| ("cpu", True, torch.float32): 1e-6, | |
| ("cpu", True, torch.bfloat16): 1e-2, | |
| ("cuda", False, torch.float32): 1e-6, | |
| ("cuda", False, torch.bfloat16): 1e-2, | |
| ("cuda", False, torch.float16): 5e-3, | |
| ("cuda", True, torch.float32): 1e-6, | |
| ("cuda", True, torch.bfloat16): 1e-2, | |
| ("cuda", True, torch.float16): 5e-3, | |
| } | |
| rtols = { | |
| ("cpu", False, torch.float32): 1e-4, | |
| ("cpu", False, torch.bfloat16): 1e-2, | |
| ("cpu", True, torch.float32): 1e-4, | |
| ("cpu", True, torch.bfloat16): 1e-2, | |
| ("cuda", False, torch.float32): 1e-4, | |
| ("cuda", False, torch.bfloat16): 1e-2, | |
| ("cuda", False, torch.float16): 5e-3, | |
| ("cuda", True, torch.float32): 1e-4, | |
| ("cuda", True, torch.bfloat16): 3e-2, | |
| ("cuda", True, torch.float16): 5e-3, | |
| } | |
| def get_mean_reldiff(failcase, x, ref, atol, rtol): | |
| return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}" | |
| for model_class in self.all_model_classes: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| model = model_class(config) | |
| is_encoder_decoder = model.config.is_encoder_decoder | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype) | |
| model_sdpa = model_sdpa.eval().to(torch_device) | |
| self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") | |
| model_eager = model_class.from_pretrained( | |
| tmpdirname, | |
| torch_dtype=torch_dtype, | |
| attn_implementation="eager", | |
| ) | |
| model_eager = model_eager.eval().to(torch_device) | |
| self.assertTrue(model_eager.config._attn_implementation == "eager") | |
| for name, submodule in model_eager.named_modules(): | |
| if "SdpaAttention" in submodule.__class__.__name__: | |
| raise ValueError("The eager model should not have SDPA attention layers") | |
| has_sdpa = False | |
| for name, submodule in model_sdpa.named_modules(): | |
| if "SdpaAttention" in submodule.__class__.__name__: | |
| has_sdpa = True | |
| break | |
| if not has_sdpa and model_sdpa.config.model_type != "falcon": | |
| raise ValueError("The SDPA model should have SDPA attention layers") | |
| # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 8 times the model, | |
| # but it would be nicer to have an efficient way to use parameterized.expand | |
| fail_cases = [] | |
| for padding_side in ["left", "right"]: | |
| for use_mask in [False, True]: | |
| for batch_size in [1, 5]: | |
| dummy_input = inputs_dict[model.main_input_name] | |
| if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]: | |
| dummy_input = dummy_input.to(torch_dtype) | |
| dummy_input = dummy_input[:batch_size] | |
| if dummy_input.shape[0] != batch_size: | |
| if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]: | |
| extension = torch.rand( | |
| batch_size - dummy_input.shape[0], | |
| *dummy_input.shape[1:], | |
| dtype=torch_dtype, | |
| device=torch_device, | |
| ) | |
| dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device) | |
| else: | |
| extension = torch.randint( | |
| high=5, | |
| size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]), | |
| dtype=dummy_input.dtype, | |
| device=torch_device, | |
| ) | |
| dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device) | |
| if not use_mask: | |
| dummy_attention_mask = None | |
| else: | |
| dummy_attention_mask = inputs_dict.get("attention_mask", None) | |
| if dummy_attention_mask is None: | |
| if is_encoder_decoder: | |
| seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1] | |
| else: | |
| seqlen = dummy_input.shape[-1] | |
| dummy_attention_mask = ( | |
| torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device) | |
| ) | |
| dummy_attention_mask = dummy_attention_mask[:batch_size] | |
| if dummy_attention_mask.shape[0] != batch_size: | |
| extension = torch.ones( | |
| batch_size - dummy_attention_mask.shape[0], | |
| *dummy_attention_mask.shape[1:], | |
| dtype=dummy_attention_mask.dtype, | |
| device=torch_device, | |
| ) | |
| dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0) | |
| dummy_attention_mask = dummy_attention_mask.to(torch_device) | |
| dummy_attention_mask[:] = 1 | |
| if padding_side == "left": | |
| dummy_attention_mask[-1, :-1] = 1 | |
| dummy_attention_mask[-1, -4:] = 0 | |
| elif padding_side == "right": | |
| dummy_attention_mask[-1, 1:] = 1 | |
| dummy_attention_mask[-1, :3] = 0 | |
| for enable_kernels in [False, True]: | |
| failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}" | |
| if is_encoder_decoder: | |
| decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:batch_size] | |
| if decoder_input_ids.shape[0] != batch_size: | |
| extension = torch.ones( | |
| batch_size - decoder_input_ids.shape[0], | |
| *decoder_input_ids.shape[1:], | |
| dtype=decoder_input_ids.dtype, | |
| device=torch_device, | |
| ) | |
| decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0) | |
| decoder_input_ids = decoder_input_ids.to(torch_device) | |
| # TODO: never an `attention_mask` arg here? | |
| other_inputs = { | |
| "decoder_input_ids": decoder_input_ids, | |
| "decoder_attention_mask": dummy_attention_mask, | |
| "output_hidden_states": True, | |
| } | |
| else: | |
| other_inputs = { | |
| "output_hidden_states": True, | |
| } | |
| # Otherwise fails for e.g. WhisperEncoderModel | |
| if "attention_mask" in inspect.signature(model_eager.forward).parameters: | |
| other_inputs["attention_mask"] = dummy_attention_mask | |
| # TODO: test gradients as well (& for FA2 as well!) | |
| with torch.no_grad(): | |
| with torch.backends.cuda.sdp_kernel( | |
| enable_flash=enable_kernels, | |
| enable_math=True, | |
| enable_mem_efficient=enable_kernels, | |
| ): | |
| outputs_eager = model_eager(dummy_input, **other_inputs) | |
| outputs_sdpa = model_sdpa(dummy_input, **other_inputs) | |
| logits_eager = ( | |
| outputs_eager.hidden_states[-1] | |
| if not is_encoder_decoder | |
| else outputs_eager.decoder_hidden_states[-1] | |
| ) | |
| logits_sdpa = ( | |
| outputs_sdpa.hidden_states[-1] | |
| if not is_encoder_decoder | |
| else outputs_sdpa.decoder_hidden_states[-1] | |
| ) | |
| if torch_device in ["cpu", "cuda"]: | |
| atol = atols[torch_device, enable_kernels, torch_dtype] | |
| rtol = rtols[torch_device, enable_kernels, torch_dtype] | |
| else: | |
| atol = 1e-7 | |
| rtol = 1e-4 | |
| # Masked tokens output slightly deviates - we don't mind that. | |
| if use_mask: | |
| if padding_side == "left": | |
| sub_sdpa = logits_sdpa[:-1] | |
| sub_eager = logits_eager[:-1] | |
| if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): | |
| fail_cases.append( | |
| get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) | |
| ) | |
| sub_sdpa = logits_sdpa[-1, :-4] | |
| sub_eager = logits_eager[-1, :-4] | |
| if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): | |
| fail_cases.append( | |
| get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) | |
| ) | |
| # Testing the padding tokens is not really meaningful but anyway | |
| # sub_sdpa = logits_sdpa[-1, -4:] | |
| # sub_eager = logits_eager[-1, -4:] | |
| # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): | |
| # fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2)) | |
| elif padding_side == "right": | |
| sub_sdpa = logits_sdpa[:-1] | |
| sub_eager = logits_eager[:-1] | |
| if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): | |
| fail_cases.append( | |
| get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) | |
| ) | |
| sub_sdpa = logits_sdpa[-1, 3:] | |
| sub_eager = logits_eager[-1, 3:] | |
| if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): | |
| fail_cases.append( | |
| get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) | |
| ) | |
| # Testing the padding tokens is not really meaningful but anyway | |
| # sub_sdpa = logits_sdpa[-1, :3] | |
| # sub_eager = logits_eager[-1, :3] | |
| # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): | |
| # fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2)) | |
| else: | |
| if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol): | |
| fail_cases.append( | |
| get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol) | |
| ) | |
| self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases)) | |
| def test_sdpa_can_dispatch_on_flash(self): | |
| compute_capability = torch.cuda.get_device_capability() | |
| major, _ = compute_capability | |
| if not torch.version.cuda or major < 8: | |
| self.skipTest("This test requires an NVIDIA GPU with compute capability >= 8.0") | |
| for model_class in self.all_model_classes: | |
| if not model_class._supports_sdpa: | |
| self.skipTest(f"{model_class.__name__} does not support SDPA") | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| if config.model_type in ["llava", "llava_next", "vipllava"]: | |
| self.skipTest("Llava-like models currently (transformers==4.39.1) requires an attention_mask input") | |
| if config.model_type in ["idefics"]: | |
| self.skipTest("Idefics currently (transformers==4.39.1) requires an image_attention_mask input") | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa") | |
| model.to(torch_device) | |
| inputs_dict.pop("attention_mask", None) | |
| inputs_dict.pop("decoder_attention_mask", None) | |
| for name, inp in inputs_dict.items(): | |
| if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]: | |
| inputs_dict[name] = inp.to(torch.float16) | |
| with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): | |
| _ = model(**inputs_dict) | |
| def test_eager_matches_sdpa_generate(self): | |
| max_new_tokens = 30 | |
| if len(self.all_generative_model_classes) == 0: | |
| self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test") | |
| for model_class in self.all_generative_model_classes: | |
| if not model_class._supports_sdpa: | |
| self.skipTest(f"{model_class.__name__} does not support SDPA") | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| dummy_input = inputs_dict[model_class.main_input_name] | |
| if dummy_input.dtype in [torch.float32, torch.bfloat16]: | |
| dummy_input = dummy_input.to(torch.float16) | |
| # make sure that all models have enough positions for generation | |
| if hasattr(config, "max_position_embeddings"): | |
| config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) | |
| model_sdpa = model_class.from_pretrained( | |
| tmpdirname, | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| ).to(torch_device) | |
| self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") | |
| model_eager = model_class.from_pretrained( | |
| tmpdirname, | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| attn_implementation="eager", | |
| ).to(torch_device) | |
| self.assertTrue(model_eager.config._attn_implementation == "eager") | |
| for name, submodule in model_eager.named_modules(): | |
| if "SdpaAttention" in submodule.__class__.__name__: | |
| raise ValueError("The eager model should not have SDPA attention layers") | |
| has_sdpa = False | |
| for name, submodule in model_sdpa.named_modules(): | |
| if "SdpaAttention" in submodule.__class__.__name__: | |
| has_sdpa = True | |
| break | |
| if not has_sdpa: | |
| raise ValueError("The SDPA model should have SDPA attention layers") | |
| # Just test that a large cache works as expected | |
| res_eager = model_eager.generate( | |
| dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False | |
| ) | |
| res_sdpa = model_sdpa.generate( | |
| dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False | |
| ) | |
| self.assertTrue(torch.allclose(res_eager, res_sdpa)) | |
| def test_sdpa_matches_eager_sliding_window(self): | |
| WINDOW_ATTENTION_MODELS = ["mistral", "mixtral", "qwen2", "qwen_moe", "starcoder2"] | |
| if len(self.all_generative_model_classes) == 0: | |
| self.skipTest(f"No generative model classes for {self.__class__.__name__}") | |
| for model_class in self.all_generative_model_classes: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| if config.model_type not in WINDOW_ATTENTION_MODELS: | |
| self.skipTest(f"{config.model_type} does not use window attention") | |
| config.sliding_window = 2 | |
| dummy_input = inputs_dict[model_class.main_input_name] | |
| attention_mask = inputs_dict["attention_mask"] | |
| self.assertTrue(dummy_input.ndim == 2) | |
| self.assertTrue(dummy_input.shape[1] > 6) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| with torch.device(torch_device): | |
| model_eager = AutoModelForCausalLM.from_config( | |
| config, attn_implementation="eager", torch_dtype=torch.float32 | |
| ) | |
| model_eager.save_pretrained(tmpdir) | |
| with torch.device(torch_device): | |
| model_sdpa = AutoModelForCausalLM.from_pretrained( | |
| tmpdir, attn_implementation="sdpa", torch_dtype=torch.float32 | |
| ) | |
| model_eager = model_eager.eval() | |
| model_sdpa = model_sdpa.eval() | |
| with torch.no_grad(): | |
| with torch.backends.cuda.sdp_kernel( | |
| enable_flash=False, | |
| enable_math=True, | |
| enable_mem_efficient=False, | |
| ): | |
| res_eager = model_eager(**inputs_dict, return_dict=False)[0] | |
| res_sdpa = model_sdpa(**inputs_dict, return_dict=False)[0] | |
| # Only non-padding tokens are expected to match. | |
| self.assertTrue( | |
| torch.allclose(res_eager[attention_mask == 1], res_sdpa[attention_mask == 1], rtol=1e-4, atol=1e-4) | |
| ) | |
| def test_flash_attn_2_generate_use_cache(self): | |
| max_new_tokens = 30 | |
| for model_class in self.all_generative_model_classes: | |
| if not model_class._supports_flash_attn_2: | |
| self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| dummy_input = inputs_dict[model_class.main_input_name] | |
| if dummy_input.dtype in [torch.float32, torch.bfloat16]: | |
| dummy_input = dummy_input.to(torch.float16) | |
| # make sure that all models have enough positions for generation | |
| if hasattr(config, "max_position_embeddings"): | |
| config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) | |
| model = model_class.from_pretrained( | |
| tmpdirname, | |
| torch_dtype=torch.float16, | |
| attn_implementation="flash_attention_2", | |
| low_cpu_mem_usage=True, | |
| ).to(torch_device) | |
| # Just test that a large cache works as expected | |
| _ = model.generate( | |
| dummy_input, | |
| attention_mask=dummy_attention_mask, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=False, | |
| use_cache=True, | |
| ) | |
| def test_flash_attn_2_fp32_ln(self): | |
| for model_class in self.all_generative_model_classes: | |
| if not model_class._supports_flash_attn_2: | |
| self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| dummy_input = inputs_dict[model.main_input_name] | |
| dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) | |
| batch_size = dummy_attention_mask.shape[0] | |
| is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size | |
| # To avoid errors with padding_side=="right" | |
| if is_padding_right: | |
| dummy_attention_mask = torch.ones_like(dummy_input) | |
| model = model_class.from_pretrained( | |
| tmpdirname, | |
| torch_dtype=torch.float16, | |
| attn_implementation="flash_attention_2", | |
| low_cpu_mem_usage=True, | |
| load_in_4bit=True, | |
| ) | |
| for _, param in model.named_parameters(): | |
| # upcast only layer norms | |
| if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16): | |
| param.data = param.data.to(torch.float32) | |
| if model.config.is_encoder_decoder: | |
| dummy_decoder_input_ids = inputs_dict["decoder_input_ids"] | |
| dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"] | |
| _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids) | |
| # with attention mask | |
| _ = model( | |
| dummy_input, | |
| attention_mask=dummy_attention_mask, | |
| decoder_input_ids=dummy_decoder_input_ids, | |
| decoder_attention_mask=dummy_decoder_attention_mask, | |
| ) | |
| else: | |
| _ = model(dummy_input) | |
| # with attention mask | |
| _ = model(dummy_input, attention_mask=dummy_attention_mask) | |
| def test_tf_from_pt_safetensors(self): | |
| for model_class in self.all_model_classes: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| tf_model_class_name = "TF" + model_class.__name__ # Add the "TF" at the beginning | |
| if not hasattr(transformers, tf_model_class_name): | |
| # transformers does not have this model in TF version yet | |
| return | |
| tf_model_class = getattr(transformers, tf_model_class_name) | |
| pt_model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| pt_model.save_pretrained(tmpdirname, safe_serialization=True) | |
| tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True) | |
| pt_model.save_pretrained(tmpdirname, safe_serialization=False) | |
| tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True) | |
| # Check models are equal | |
| for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights): | |
| self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) | |
| def test_flax_from_pt_safetensors(self): | |
| for model_class in self.all_model_classes: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| flax_model_class_name = "Flax" + model_class.__name__ # Add the "Flax at the beginning | |
| if not hasattr(transformers, flax_model_class_name): | |
| # transformers does not have this model in Flax version yet | |
| return | |
| flax_model_class = getattr(transformers, flax_model_class_name) | |
| pt_model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| pt_model.save_pretrained(tmpdirname, safe_serialization=True) | |
| flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True) | |
| pt_model.save_pretrained(tmpdirname, safe_serialization=False) | |
| flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True) | |
| # Check models are equal | |
| self.assertTrue(check_models_equal(flax_model_1, flax_model_2)) | |
| def test_flash_attn_2_from_config(self): | |
| for model_class in self.all_generative_model_classes: | |
| if not model_class._supports_flash_attn_2: | |
| self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| # TODO: to change it in the future with other relevant auto classes | |
| fa2_model = AutoModelForCausalLM.from_config( | |
| config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16 | |
| ).to(torch_device) | |
| dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device) | |
| dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device) | |
| fa2_correctly_converted = False | |
| for _, module in fa2_model.named_modules(): | |
| if "FlashAttention" in module.__class__.__name__: | |
| fa2_correctly_converted = True | |
| break | |
| self.assertTrue(fa2_correctly_converted) | |
| _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| fa2_model.save_pretrained(tmpdirname) | |
| model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname) | |
| self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2") | |
| fa2_correctly_converted = False | |
| for _, module in model_from_pretrained.named_modules(): | |
| if "FlashAttention" in module.__class__.__name__: | |
| fa2_correctly_converted = True | |
| break | |
| self.assertFalse(fa2_correctly_converted) | |
| global_rng = random.Random() | |
| def ids_tensor(shape, vocab_size, rng=None, name=None): | |
| # Creates a random int32 tensor of the shape within the vocab size | |
| if rng is None: | |
| rng = global_rng | |
| total_dims = 1 | |
| for dim in shape: | |
| total_dims *= dim | |
| values = [] | |
| for _ in range(total_dims): | |
| values.append(rng.randint(0, vocab_size - 1)) | |
| return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous() | |
| def random_attention_mask(shape, rng=None, name=None): | |
| attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None) | |
| # make sure that at least one token is attended to for each batch | |
| # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask | |
| attn_mask[:, 0] = 1 | |
| return attn_mask | |
| def floats_tensor(shape, scale=1.0, rng=None, name=None): | |
| """Creates a random float32 tensor""" | |
| if rng is None: | |
| rng = global_rng | |
| total_dims = 1 | |
| for dim in shape: | |
| total_dims *= dim | |
| values = [] | |
| for _ in range(total_dims): | |
| values.append(rng.random() * scale) | |
| return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous() | |