Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import tempfile | |
| import unittest | |
| from transformers import CLIPTokenizerFast, ProcessorMixin | |
| from transformers.models.auto.processing_auto import processor_class_from_name | |
| from transformers.testing_utils import ( | |
| check_json_file_has_correct_format, | |
| require_tokenizers, | |
| require_torch, | |
| require_vision, | |
| ) | |
| from transformers.utils import is_vision_available | |
| if is_vision_available(): | |
| from transformers import CLIPImageProcessor | |
| class ProcessorTesterMixin: | |
| processor_class = None | |
| def prepare_processor_dict(self): | |
| return {} | |
| def get_component(self, attribute, **kwargs): | |
| assert attribute in self.processor_class.attributes | |
| component_class_name = getattr(self.processor_class, f"{attribute}_class") | |
| if isinstance(component_class_name, tuple): | |
| component_class_name = component_class_name[0] | |
| component_class = processor_class_from_name(component_class_name) | |
| component = component_class.from_pretrained(self.tmpdirname, **kwargs) # noqa | |
| return component | |
| def prepare_components(self): | |
| components = {} | |
| for attribute in self.processor_class.attributes: | |
| component = self.get_component(attribute) | |
| components[attribute] = component | |
| return components | |
| def get_processor(self): | |
| components = self.prepare_components() | |
| processor = self.processor_class(**components, **self.prepare_processor_dict()) | |
| return processor | |
| def test_processor_to_json_string(self): | |
| processor = self.get_processor() | |
| obj = json.loads(processor.to_json_string()) | |
| for key, value in self.prepare_processor_dict().items(): | |
| self.assertEqual(obj[key], value) | |
| self.assertEqual(getattr(processor, key, None), value) | |
| def test_processor_from_and_save_pretrained(self): | |
| processor_first = self.get_processor() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| saved_files = processor_first.save_pretrained(tmpdirname) | |
| if len(saved_files) > 0: | |
| check_json_file_has_correct_format(saved_files[0]) | |
| processor_second = self.processor_class.from_pretrained(tmpdirname) | |
| self.assertEqual(processor_second.to_dict(), processor_first.to_dict()) | |
| class MyProcessor(ProcessorMixin): | |
| attributes = ["image_processor", "tokenizer"] | |
| image_processor_class = "CLIPImageProcessor" | |
| tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") | |
| def __init__(self, image_processor=None, tokenizer=None, processor_attr_1=1, processor_attr_2=True): | |
| super().__init__(image_processor, tokenizer) | |
| self.processor_attr_1 = processor_attr_1 | |
| self.processor_attr_2 = processor_attr_2 | |
| class ProcessorTest(unittest.TestCase): | |
| processor_class = MyProcessor | |
| def prepare_processor_dict(self): | |
| return {"processor_attr_1": 1, "processor_attr_2": False} | |
| def get_processor(self): | |
| image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") | |
| tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-large-patch14") | |
| processor = MyProcessor(image_processor, tokenizer, **self.prepare_processor_dict()) | |
| return processor | |
| def test_processor_to_json_string(self): | |
| processor = self.get_processor() | |
| obj = json.loads(processor.to_json_string()) | |
| for key, value in self.prepare_processor_dict().items(): | |
| self.assertEqual(obj[key], value) | |
| self.assertEqual(getattr(processor, key, None), value) | |
| def test_processor_from_and_save_pretrained(self): | |
| processor_first = self.get_processor() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| saved_file = processor_first.save_pretrained(tmpdirname)[0] | |
| check_json_file_has_correct_format(saved_file) | |
| processor_second = self.processor_class.from_pretrained(tmpdirname) | |
| self.assertEqual(processor_second.to_dict(), processor_first.to_dict()) | |