Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 HuggingFace Inc.. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| isort:skip_file | |
| """ | |
| import os | |
| import pickle | |
| import tempfile | |
| import unittest | |
| from typing import Callable, Optional | |
| import numpy as np | |
| from transformers import ( | |
| BatchEncoding, | |
| BertTokenizer, | |
| BertTokenizerFast, | |
| PreTrainedTokenizer, | |
| PreTrainedTokenizerFast, | |
| TensorType, | |
| TokenSpan, | |
| is_tokenizers_available, | |
| ) | |
| from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer | |
| from transformers.testing_utils import CaptureStderr, require_flax, require_tf, require_tokenizers, require_torch, slow | |
| if is_tokenizers_available(): | |
| from tokenizers import Tokenizer | |
| from tokenizers.models import WordPiece | |
| class TokenizerUtilsTest(unittest.TestCase): | |
| def check_tokenizer_from_pretrained(self, tokenizer_class): | |
| s3_models = list(tokenizer_class.max_model_input_sizes.keys()) | |
| for model_name in s3_models[:1]: | |
| tokenizer = tokenizer_class.from_pretrained(model_name) | |
| self.assertIsNotNone(tokenizer) | |
| self.assertIsInstance(tokenizer, tokenizer_class) | |
| self.assertIsInstance(tokenizer, PreTrainedTokenizer) | |
| for special_tok in tokenizer.all_special_tokens: | |
| self.assertIsInstance(special_tok, str) | |
| special_tok_id = tokenizer.convert_tokens_to_ids(special_tok) | |
| self.assertIsInstance(special_tok_id, int) | |
| def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None): | |
| batch_encoding_str = pickle.dumps(be_original) | |
| self.assertIsNotNone(batch_encoding_str) | |
| be_restored = pickle.loads(batch_encoding_str) | |
| # Ensure is_fast is correctly restored | |
| self.assertEqual(be_restored.is_fast, be_original.is_fast) | |
| # Ensure encodings are potentially correctly restored | |
| if be_original.is_fast: | |
| self.assertIsNotNone(be_restored.encodings) | |
| else: | |
| self.assertIsNone(be_restored.encodings) | |
| # Ensure the keys are the same | |
| for original_v, restored_v in zip(be_original.values(), be_restored.values()): | |
| if equal_op: | |
| self.assertTrue(equal_op(restored_v, original_v)) | |
| else: | |
| self.assertEqual(restored_v, original_v) | |
| def test_pretrained_tokenizers(self): | |
| self.check_tokenizer_from_pretrained(GPT2Tokenizer) | |
| def test_tensor_type_from_str(self): | |
| self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW) | |
| self.assertEqual(TensorType("pt"), TensorType.PYTORCH) | |
| self.assertEqual(TensorType("np"), TensorType.NUMPY) | |
| def test_batch_encoding_pickle(self): | |
| import numpy as np | |
| tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased") | |
| tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased") | |
| # Python no tensor | |
| with self.subTest("BatchEncoding (Python, return_tensors=None)"): | |
| self.assert_dump_and_restore(tokenizer_p("Small example to encode")) | |
| with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"): | |
| self.assert_dump_and_restore( | |
| tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal | |
| ) | |
| with self.subTest("BatchEncoding (Rust, return_tensors=None)"): | |
| self.assert_dump_and_restore(tokenizer_r("Small example to encode")) | |
| with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"): | |
| self.assert_dump_and_restore( | |
| tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal | |
| ) | |
| def test_batch_encoding_pickle_tf(self): | |
| import tensorflow as tf | |
| def tf_array_equals(t1, t2): | |
| return tf.reduce_all(tf.equal(t1, t2)) | |
| tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased") | |
| tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased") | |
| with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"): | |
| self.assert_dump_and_restore( | |
| tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals | |
| ) | |
| with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"): | |
| self.assert_dump_and_restore( | |
| tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals | |
| ) | |
| def test_batch_encoding_pickle_pt(self): | |
| import torch | |
| tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased") | |
| tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased") | |
| with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"): | |
| self.assert_dump_and_restore( | |
| tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal | |
| ) | |
| with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"): | |
| self.assert_dump_and_restore( | |
| tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal | |
| ) | |
| def test_batch_encoding_is_fast(self): | |
| tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased") | |
| tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased") | |
| with self.subTest("Python Tokenizer"): | |
| self.assertFalse(tokenizer_p("Small example to_encode").is_fast) | |
| with self.subTest("Rust Tokenizer"): | |
| self.assertTrue(tokenizer_r("Small example to_encode").is_fast) | |
| def test_batch_encoding_word_to_tokens(self): | |
| tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased") | |
| encoded = tokenizer_r(["Test", "\xad", "test"], is_split_into_words=True) | |
| self.assertEqual(encoded.word_to_tokens(0), TokenSpan(start=1, end=2)) | |
| self.assertEqual(encoded.word_to_tokens(1), None) | |
| self.assertEqual(encoded.word_to_tokens(2), TokenSpan(start=2, end=3)) | |
| def test_batch_encoding_with_labels(self): | |
| batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) | |
| tensor_batch = batch.convert_to_tensors(tensor_type="np") | |
| self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) | |
| self.assertEqual(tensor_batch["labels"].shape, (2,)) | |
| # test converting the converted | |
| with CaptureStderr() as cs: | |
| tensor_batch = batch.convert_to_tensors(tensor_type="np") | |
| self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") | |
| batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) | |
| tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True) | |
| self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) | |
| self.assertEqual(tensor_batch["labels"].shape, (1,)) | |
| def test_batch_encoding_with_labels_pt(self): | |
| batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) | |
| tensor_batch = batch.convert_to_tensors(tensor_type="pt") | |
| self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) | |
| self.assertEqual(tensor_batch["labels"].shape, (2,)) | |
| # test converting the converted | |
| with CaptureStderr() as cs: | |
| tensor_batch = batch.convert_to_tensors(tensor_type="pt") | |
| self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") | |
| batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) | |
| tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True) | |
| self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) | |
| self.assertEqual(tensor_batch["labels"].shape, (1,)) | |
| def test_batch_encoding_with_labels_tf(self): | |
| batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) | |
| tensor_batch = batch.convert_to_tensors(tensor_type="tf") | |
| self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) | |
| self.assertEqual(tensor_batch["labels"].shape, (2,)) | |
| # test converting the converted | |
| with CaptureStderr() as cs: | |
| tensor_batch = batch.convert_to_tensors(tensor_type="tf") | |
| self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") | |
| batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) | |
| tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True) | |
| self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) | |
| self.assertEqual(tensor_batch["labels"].shape, (1,)) | |
| def test_batch_encoding_with_labels_jax(self): | |
| batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) | |
| tensor_batch = batch.convert_to_tensors(tensor_type="jax") | |
| self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) | |
| self.assertEqual(tensor_batch["labels"].shape, (2,)) | |
| # test converting the converted | |
| with CaptureStderr() as cs: | |
| tensor_batch = batch.convert_to_tensors(tensor_type="jax") | |
| self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") | |
| batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) | |
| tensor_batch = batch.convert_to_tensors(tensor_type="jax", prepend_batch_axis=True) | |
| self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) | |
| self.assertEqual(tensor_batch["labels"].shape, (1,)) | |
| def test_padding_accepts_tensors(self): | |
| features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}] | |
| tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") | |
| batch = tokenizer.pad(features, padding=True) | |
| self.assertTrue(isinstance(batch["input_ids"], np.ndarray)) | |
| self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
| batch = tokenizer.pad(features, padding=True, return_tensors="np") | |
| self.assertTrue(isinstance(batch["input_ids"], np.ndarray)) | |
| self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
| def test_padding_accepts_tensors_pt(self): | |
| import torch | |
| features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}] | |
| tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") | |
| batch = tokenizer.pad(features, padding=True) | |
| self.assertTrue(isinstance(batch["input_ids"], torch.Tensor)) | |
| self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
| batch = tokenizer.pad(features, padding=True, return_tensors="pt") | |
| self.assertTrue(isinstance(batch["input_ids"], torch.Tensor)) | |
| self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
| def test_padding_accepts_tensors_tf(self): | |
| import tensorflow as tf | |
| features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}] | |
| tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") | |
| batch = tokenizer.pad(features, padding=True) | |
| self.assertTrue(isinstance(batch["input_ids"], tf.Tensor)) | |
| self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
| batch = tokenizer.pad(features, padding=True, return_tensors="tf") | |
| self.assertTrue(isinstance(batch["input_ids"], tf.Tensor)) | |
| self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
| def test_instantiation_from_tokenizers(self): | |
| bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]")) | |
| PreTrainedTokenizerFast(tokenizer_object=bert_tokenizer) | |
| def test_instantiation_from_tokenizers_json_file(self): | |
| bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]")) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| bert_tokenizer.save(os.path.join(tmpdirname, "tokenizer.json")) | |
| PreTrainedTokenizerFast(tokenizer_file=os.path.join(tmpdirname, "tokenizer.json")) | |