Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2020 The Hugging Face Team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import io | |
| import unittest | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| from transformers import AlbertForMaskedLM | |
| from transformers.testing_utils import require_torch | |
| from transformers.utils import ModelOutput, is_torch_available | |
| if is_torch_available(): | |
| import torch | |
| from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_2 | |
| class ModelOutputTest(ModelOutput): | |
| a: float | |
| b: Optional[float] = None | |
| c: Optional[float] = None | |
| class ModelOutputTester(unittest.TestCase): | |
| def test_get_attributes(self): | |
| x = ModelOutputTest(a=30) | |
| self.assertEqual(x.a, 30) | |
| self.assertIsNone(x.b) | |
| self.assertIsNone(x.c) | |
| with self.assertRaises(AttributeError): | |
| _ = x.d | |
| def test_index_with_ints_and_slices(self): | |
| x = ModelOutputTest(a=30, b=10) | |
| self.assertEqual(x[0], 30) | |
| self.assertEqual(x[1], 10) | |
| self.assertEqual(x[:2], (30, 10)) | |
| self.assertEqual(x[:], (30, 10)) | |
| x = ModelOutputTest(a=30, c=10) | |
| self.assertEqual(x[0], 30) | |
| self.assertEqual(x[1], 10) | |
| self.assertEqual(x[:2], (30, 10)) | |
| self.assertEqual(x[:], (30, 10)) | |
| def test_index_with_strings(self): | |
| x = ModelOutputTest(a=30, b=10) | |
| self.assertEqual(x["a"], 30) | |
| self.assertEqual(x["b"], 10) | |
| with self.assertRaises(KeyError): | |
| _ = x["c"] | |
| x = ModelOutputTest(a=30, c=10) | |
| self.assertEqual(x["a"], 30) | |
| self.assertEqual(x["c"], 10) | |
| with self.assertRaises(KeyError): | |
| _ = x["b"] | |
| def test_dict_like_properties(self): | |
| x = ModelOutputTest(a=30) | |
| self.assertEqual(list(x.keys()), ["a"]) | |
| self.assertEqual(list(x.values()), [30]) | |
| self.assertEqual(list(x.items()), [("a", 30)]) | |
| self.assertEqual(list(x), ["a"]) | |
| x = ModelOutputTest(a=30, b=10) | |
| self.assertEqual(list(x.keys()), ["a", "b"]) | |
| self.assertEqual(list(x.values()), [30, 10]) | |
| self.assertEqual(list(x.items()), [("a", 30), ("b", 10)]) | |
| self.assertEqual(list(x), ["a", "b"]) | |
| x = ModelOutputTest(a=30, c=10) | |
| self.assertEqual(list(x.keys()), ["a", "c"]) | |
| self.assertEqual(list(x.values()), [30, 10]) | |
| self.assertEqual(list(x.items()), [("a", 30), ("c", 10)]) | |
| self.assertEqual(list(x), ["a", "c"]) | |
| with self.assertRaises(Exception): | |
| x = x.update({"d": 20}) | |
| with self.assertRaises(Exception): | |
| del x["a"] | |
| with self.assertRaises(Exception): | |
| _ = x.pop("a") | |
| with self.assertRaises(Exception): | |
| _ = x.setdefault("d", 32) | |
| def test_set_attributes(self): | |
| x = ModelOutputTest(a=30) | |
| x.a = 10 | |
| self.assertEqual(x.a, 10) | |
| self.assertEqual(x["a"], 10) | |
| def test_set_keys(self): | |
| x = ModelOutputTest(a=30) | |
| x["a"] = 10 | |
| self.assertEqual(x.a, 10) | |
| self.assertEqual(x["a"], 10) | |
| def test_instantiate_from_dict(self): | |
| x = ModelOutputTest({"a": 30, "b": 10}) | |
| self.assertEqual(list(x.keys()), ["a", "b"]) | |
| self.assertEqual(x.a, 30) | |
| self.assertEqual(x.b, 10) | |
| def test_instantiate_from_iterator(self): | |
| x = ModelOutputTest([("a", 30), ("b", 10)]) | |
| self.assertEqual(list(x.keys()), ["a", "b"]) | |
| self.assertEqual(x.a, 30) | |
| self.assertEqual(x.b, 10) | |
| with self.assertRaises(ValueError): | |
| _ = ModelOutputTest([("a", 30), (10, 10)]) | |
| x = ModelOutputTest(a=(30, 30)) | |
| self.assertEqual(list(x.keys()), ["a"]) | |
| self.assertEqual(x.a, (30, 30)) | |
| def test_torch_pytree(self): | |
| # ensure torch.utils._pytree treats ModelOutput subclasses as nodes (and not leaves) | |
| # this is important for DistributedDataParallel gradient synchronization with static_graph=True | |
| import torch.utils._pytree as pytree | |
| x = ModelOutput({"a": 1.0, "c": 2.0}) | |
| self.assertFalse(pytree._is_leaf(x)) | |
| x = ModelOutputTest(a=1.0, c=2.0) | |
| self.assertFalse(pytree._is_leaf(x)) | |
| expected_flat_outs = [1.0, 2.0] | |
| expected_tree_spec = pytree.TreeSpec(ModelOutputTest, ["a", "c"], [pytree.LeafSpec(), pytree.LeafSpec()]) | |
| actual_flat_outs, actual_tree_spec = pytree.tree_flatten(x) | |
| self.assertEqual(expected_flat_outs, actual_flat_outs) | |
| self.assertEqual(expected_tree_spec, actual_tree_spec) | |
| unflattened_x = pytree.tree_unflatten(actual_flat_outs, actual_tree_spec) | |
| self.assertEqual(x, unflattened_x) | |
| if is_torch_greater_or_equal_than_2_2: | |
| self.assertEqual( | |
| pytree.treespec_dumps(actual_tree_spec), | |
| '[1, {"type": "tests.utils.test_model_output.ModelOutputTest", "context": "[\\"a\\", \\"c\\"]", "children_spec": [{"type": null, "context": null, "children_spec": []}, {"type": null, "context": null, "children_spec": []}]}]', | |
| ) | |
| # TODO: @ydshieh | |
| def test_export_serialization(self): | |
| if not is_torch_greater_or_equal_than_2_2: | |
| return | |
| model_cls = AlbertForMaskedLM | |
| model_config = model_cls.config_class() | |
| model = model_cls(model_config) | |
| input_dict = {"input_ids": torch.randint(0, 30000, (1, 512), dtype=torch.int64, requires_grad=False)} | |
| ep = torch.export.export(model, (), input_dict) | |
| buffer = io.BytesIO() | |
| torch.export.save(ep, buffer) | |
| buffer.seek(0) | |
| loaded_ep = torch.export.load(buffer) | |
| input_dict = {"input_ids": torch.randint(0, 30000, (1, 512), dtype=torch.int64, requires_grad=False)} | |
| assert torch.allclose(model(**input_dict).logits, loaded_ep(**input_dict).logits) | |
| class ModelOutputTestNoDataclass(ModelOutput): | |
| """Invalid test subclass of ModelOutput where @dataclass decorator is not used""" | |
| a: float | |
| b: Optional[float] = None | |
| c: Optional[float] = None | |
| class ModelOutputSubclassTester(unittest.TestCase): | |
| def test_direct_model_output(self): | |
| # Check that direct usage of ModelOutput instantiates without errors | |
| ModelOutput({"a": 1.1}) | |
| def test_subclass_no_dataclass(self): | |
| # Check that a subclass of ModelOutput without @dataclass is invalid | |
| # A valid subclass is inherently tested other unit tests above. | |
| with self.assertRaises(TypeError): | |
| ModelOutputTestNoDataclass(a=1.1, b=2.2, c=3.3) | |