Spaces:
Running
Running
| from openai import OpenAI | |
| import anthropic | |
| from together import Together | |
| import cohere | |
| import json | |
| import re | |
| import os | |
| import requests | |
| from prompts import ( | |
| JUDGE_SYSTEM_PROMPT, | |
| PROMETHEUS_PROMPT, | |
| PROMETHEUS_PROMPT_WITH_REFERENCE, | |
| ) | |
| # Initialize clients | |
| anthropic_client = anthropic.Anthropic() | |
| openai_client = OpenAI() | |
| together_client = Together() | |
| hf_api_key = os.getenv("HF_API_KEY") | |
| cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY")) | |
| huggingface_client = OpenAI( | |
| base_url="https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud/v1/", | |
| api_key=hf_api_key | |
| ) | |
| def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0): | |
| """Get response from OpenAI API""" | |
| try: | |
| response = openai_client.chat.completions.create( | |
| model=model_name, | |
| messages=[ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": prompt}, | |
| ], | |
| max_completion_tokens=max_tokens, | |
| temperature=temperature, | |
| ) | |
| return response.choices[0].message.content | |
| except Exception as e: | |
| return f"Error with OpenAI model {model_name}: {str(e)}" | |
| def get_anthropic_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0): | |
| """Get response from Anthropic API""" | |
| try: | |
| response = anthropic_client.messages.create( | |
| model=model_name, | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| system=system_prompt, | |
| messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}], | |
| ) | |
| return response.content[0].text | |
| except Exception as e: | |
| return f"Error with Anthropic model {model_name}: {str(e)}" | |
| def get_together_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0): | |
| """Get response from Together API""" | |
| try: | |
| response = together_client.chat.completions.create( | |
| model=model_name, | |
| messages=[ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": prompt}, | |
| ], | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| stream=False, | |
| ) | |
| return response.choices[0].message.content | |
| except Exception as e: | |
| return f"Error with Together model {model_name}: {str(e)}" | |
| def get_hf_response(model_name, prompt, max_tokens=500): | |
| """Get response from Hugging Face model""" | |
| try: | |
| headers = { | |
| "Accept": "application/json", | |
| "Authorization": f"Bearer {hf_api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| payload = { | |
| "inputs": prompt, | |
| "parameters": { | |
| "max_new_tokens": max_tokens, | |
| "return_full_text": False | |
| } | |
| } | |
| response = requests.post( | |
| "https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud", | |
| headers=headers, | |
| json=payload | |
| ) | |
| return response.json()[0]["generated_text"] | |
| except Exception as e: | |
| return f"Error with Hugging Face model {model_name}: {str(e)}" | |
| def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0): | |
| """Get response from Cohere API""" | |
| try: | |
| response = cohere_client.chat( | |
| model=model_name, | |
| messages=[ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": prompt} | |
| ], | |
| max_tokens=max_tokens, | |
| temperature=temperature | |
| ) | |
| # Extract the text from the content items | |
| content_items = response.message.content | |
| if isinstance(content_items, list): | |
| # Get the text from the first content item | |
| return content_items[0].text | |
| return str(content_items) # Fallback if it's not a list | |
| except Exception as e: | |
| return f"Error with Cohere model {model_name}: {str(e)}" | |
| def get_model_response( | |
| model_name, | |
| model_info, | |
| prompt_data, | |
| use_reference=False, | |
| max_tokens=500, | |
| temperature=0 | |
| ): | |
| """Get response from appropriate API based on model organization""" | |
| if not model_info: | |
| return "Model not found or unsupported." | |
| api_model = model_info["api_model"] | |
| organization = model_info["organization"] | |
| # Determine if model is Prometheus | |
| is_prometheus = (organization == "Prometheus") | |
| # For non-Prometheus models, use the Judge system prompt | |
| system_prompt = None if is_prometheus else JUDGE_SYSTEM_PROMPT | |
| # Select the appropriate base prompt | |
| if use_reference: | |
| base_prompt = PROMETHEUS_PROMPT_WITH_REFERENCE | |
| else: | |
| base_prompt = PROMETHEUS_PROMPT | |
| # For non-Prometheus models, replace the specific instruction | |
| if not is_prometheus: | |
| base_prompt = base_prompt.replace( | |
| '3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"', | |
| '3. Your output format should strictly adhere to JSON as follows: {{"feedback": "<write feedback>", "result": <numerical score>}}. Ensure the output is valid JSON, without additional formatting or explanations.' | |
| ) | |
| try: | |
| # Format the prompt with the provided data, only using available keys | |
| final_prompt = base_prompt.format( | |
| human_input=prompt_data['human_input'], | |
| ai_response=prompt_data['ai_response'], | |
| ground_truth_input=prompt_data.get('ground_truth_input', ''), | |
| eval_criteria=prompt_data['eval_criteria'], | |
| score1_desc=prompt_data['score1_desc'], | |
| score2_desc=prompt_data['score2_desc'], | |
| score3_desc=prompt_data['score3_desc'], | |
| score4_desc=prompt_data['score4_desc'], | |
| score5_desc=prompt_data['score5_desc'] | |
| ) | |
| except KeyError as e: | |
| return f"Error formatting prompt: Missing required field {str(e)}" | |
| try: | |
| if organization == "OpenAI": | |
| return get_openai_response( | |
| api_model, final_prompt, system_prompt, max_tokens, temperature | |
| ) | |
| elif organization == "Anthropic": | |
| return get_anthropic_response( | |
| api_model, final_prompt, system_prompt, max_tokens, temperature | |
| ) | |
| elif organization == "Prometheus": | |
| return get_hf_response( | |
| api_model, final_prompt, max_tokens | |
| ) | |
| elif organization == "Cohere": | |
| return get_cohere_response( | |
| api_model, final_prompt, system_prompt, max_tokens, temperature | |
| ) | |
| else: | |
| # All other organizations use Together API | |
| return get_together_response( | |
| api_model, final_prompt, system_prompt, max_tokens, temperature | |
| ) | |
| except Exception as e: | |
| return f"Error with {organization} model {model_name}: {str(e)}" | |
| def parse_model_response(response): | |
| try: | |
| # Debug print | |
| print(f"Raw model response: {response}") | |
| # First try to parse the entire response as JSON | |
| try: | |
| data = json.loads(response) | |
| return str(data.get("result", "N/A")), data.get("feedback", "N/A") | |
| except json.JSONDecodeError: | |
| # If that fails (typically for smaller models), try to find JSON within the response | |
| json_match = re.search(r"{.*}", response, re.DOTALL) | |
| if json_match: | |
| data = json.loads(json_match.group(0)) | |
| return str(data.get("result", "N/A")), data.get("feedback", "N/A") | |
| else: | |
| return "Error", f"Invalid response format returned - here is the raw model response: {response}" | |
| except Exception as e: | |
| # Debug print for error case | |
| print(f"Failed to parse response: {str(e)}") | |
| return "Error", f"Failed to parse response: {response}" | |
| def prometheus_parse_model_response(output): | |
| try: | |
| print(f"Raw model response: {output}") | |
| output = output.strip() | |
| # Remove "Feedback:" prefix if present (case insensitive) | |
| output = re.sub(r'^feedback:\s*', '', output, flags=re.IGNORECASE) | |
| # New pattern to match [RESULT] X at the beginning | |
| begin_result_pattern = r'^\[RESULT\]\s*(\d+)\s*\n*(.*?)$' | |
| begin_match = re.search(begin_result_pattern, output, re.DOTALL | re.IGNORECASE) | |
| if begin_match: | |
| score = int(begin_match.group(1)) | |
| feedback = begin_match.group(2).strip() | |
| return str(score), feedback | |
| # Existing patterns for end-of-string results... | |
| pattern = r"(.*?)\s*\[RESULT\]\s*[\(\[]?(\d+)[\)\]]?" | |
| match = re.search(pattern, output, re.DOTALL | re.IGNORECASE) | |
| if match: | |
| feedback = match.group(1).strip() | |
| score = int(match.group(2)) | |
| return str(score), feedback | |
| # If no match, try to match "... Score: X" | |
| pattern = r"(.*?)\s*(?:Score|Result)\s*:\s*[\(\[]?(\d+)[\)\]]?" | |
| match = re.search(pattern, output, re.DOTALL | re.IGNORECASE) | |
| if match: | |
| feedback = match.group(1).strip() | |
| score = int(match.group(2)) | |
| return str(score), feedback | |
| # Pattern to handle [Score X] at the end | |
| pattern = r"(.*?)\s*\[(?:Score|Result)\s*[\(\[]?(\d+)[\)\]]?\]$" | |
| match = re.search(pattern, output, re.DOTALL) | |
| if match: | |
| feedback = match.group(1).strip() | |
| score = int(match.group(2)) | |
| return str(score), feedback | |
| # Final fallback attempt | |
| pattern = r"[\(\[]?(\d+)[\)\]]?\s*\]?$" | |
| match = re.search(pattern, output) | |
| if match: | |
| score = int(match.group(1)) | |
| feedback = output[:match.start()].rstrip() | |
| # Remove any trailing brackets from feedback | |
| feedback = re.sub(r'\s*\[[^\]]*$', '', feedback).strip() | |
| return str(score), feedback | |
| return "Error", f"Failed to parse response: {output}" | |
| except Exception as e: | |
| print(f"Failed to parse response: {str(e)}") | |
| return "Error", f"Exception during parsing: {str(e)}" |