Spaces:
Runtime error
Runtime error
| import numpy as np | |
| from typing import Dict, List, NoReturn, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torchlibrosa.stft import STFT, ISTFT, magphase | |
| from models.base import Base, init_layer, init_bn, act | |
| class FiLM(nn.Module): | |
| def __init__(self, film_meta, condition_size): | |
| super(FiLM, self).__init__() | |
| self.condition_size = condition_size | |
| self.modules, _ = self.create_film_modules( | |
| film_meta=film_meta, | |
| ancestor_names=[], | |
| ) | |
| def create_film_modules(self, film_meta, ancestor_names): | |
| modules = {} | |
| # Pre-order traversal of modules | |
| for module_name, value in film_meta.items(): | |
| if isinstance(value, int): | |
| ancestor_names.append(module_name) | |
| unique_module_name = '->'.join(ancestor_names) | |
| modules[module_name] = self.add_film_layer_to_module( | |
| num_features=value, | |
| unique_module_name=unique_module_name, | |
| ) | |
| elif isinstance(value, dict): | |
| ancestor_names.append(module_name) | |
| modules[module_name], _ = self.create_film_modules( | |
| film_meta=value, | |
| ancestor_names=ancestor_names, | |
| ) | |
| ancestor_names.pop() | |
| return modules, ancestor_names | |
| def add_film_layer_to_module(self, num_features, unique_module_name): | |
| layer = nn.Linear(self.condition_size, num_features) | |
| init_layer(layer) | |
| self.add_module(name=unique_module_name, module=layer) | |
| return layer | |
| def forward(self, conditions): | |
| film_dict = self.calculate_film_data( | |
| conditions=conditions, | |
| modules=self.modules, | |
| ) | |
| return film_dict | |
| def calculate_film_data(self, conditions, modules): | |
| film_data = {} | |
| # Pre-order traversal of modules | |
| for module_name, module in modules.items(): | |
| if isinstance(module, nn.Module): | |
| film_data[module_name] = module(conditions)[:, :, None, None] | |
| elif isinstance(module, dict): | |
| film_data[module_name] = self.calculate_film_data(conditions, module) | |
| return film_data | |
| class ConvBlockRes(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: Tuple, | |
| momentum: float, | |
| has_film, | |
| ): | |
| r"""Residual block.""" | |
| super(ConvBlockRes, self).__init__() | |
| padding = [kernel_size[0] // 2, kernel_size[1] // 2] | |
| self.bn1 = nn.BatchNorm2d(in_channels, momentum=momentum) | |
| self.bn2 = nn.BatchNorm2d(out_channels, momentum=momentum) | |
| self.conv1 = nn.Conv2d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=kernel_size, | |
| stride=(1, 1), | |
| dilation=(1, 1), | |
| padding=padding, | |
| bias=False, | |
| ) | |
| self.conv2 = nn.Conv2d( | |
| in_channels=out_channels, | |
| out_channels=out_channels, | |
| kernel_size=kernel_size, | |
| stride=(1, 1), | |
| dilation=(1, 1), | |
| padding=padding, | |
| bias=False, | |
| ) | |
| if in_channels != out_channels: | |
| self.shortcut = nn.Conv2d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=(1, 1), | |
| stride=(1, 1), | |
| padding=(0, 0), | |
| ) | |
| self.is_shortcut = True | |
| else: | |
| self.is_shortcut = False | |
| self.has_film = has_film | |
| self.init_weights() | |
| def init_weights(self) -> NoReturn: | |
| r"""Initialize weights.""" | |
| init_bn(self.bn1) | |
| init_bn(self.bn2) | |
| init_layer(self.conv1) | |
| init_layer(self.conv2) | |
| if self.is_shortcut: | |
| init_layer(self.shortcut) | |
| def forward(self, input_tensor: torch.Tensor, film_dict: Dict) -> torch.Tensor: | |
| r"""Forward data into the module. | |
| Args: | |
| input_tensor: (batch_size, input_feature_maps, time_steps, freq_bins) | |
| Returns: | |
| output_tensor: (batch_size, output_feature_maps, time_steps, freq_bins) | |
| """ | |
| b1 = film_dict['beta1'] | |
| b2 = film_dict['beta2'] | |
| x = self.conv1(F.leaky_relu_(self.bn1(input_tensor) + b1, negative_slope=0.01)) | |
| x = self.conv2(F.leaky_relu_(self.bn2(x) + b2, negative_slope=0.01)) | |
| if self.is_shortcut: | |
| return self.shortcut(input_tensor) + x | |
| else: | |
| return input_tensor + x | |
| class EncoderBlockRes1B(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: Tuple, | |
| downsample: Tuple, | |
| momentum: float, | |
| has_film, | |
| ): | |
| r"""Encoder block, contains 8 convolutional layers.""" | |
| super(EncoderBlockRes1B, self).__init__() | |
| self.conv_block1 = ConvBlockRes( | |
| in_channels, out_channels, kernel_size, momentum, has_film, | |
| ) | |
| self.downsample = downsample | |
| def forward(self, input_tensor: torch.Tensor, film_dict: Dict) -> torch.Tensor: | |
| r"""Forward data into the module. | |
| Args: | |
| input_tensor: (batch_size, input_feature_maps, time_steps, freq_bins) | |
| Returns: | |
| encoder_pool: (batch_size, output_feature_maps, downsampled_time_steps, downsampled_freq_bins) | |
| encoder: (batch_size, output_feature_maps, time_steps, freq_bins) | |
| """ | |
| encoder = self.conv_block1(input_tensor, film_dict['conv_block1']) | |
| encoder_pool = F.avg_pool2d(encoder, kernel_size=self.downsample) | |
| return encoder_pool, encoder | |
| class DecoderBlockRes1B(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: Tuple, | |
| upsample: Tuple, | |
| momentum: float, | |
| has_film, | |
| ): | |
| r"""Decoder block, contains 1 transposed convolutional and 8 convolutional layers.""" | |
| super(DecoderBlockRes1B, self).__init__() | |
| self.kernel_size = kernel_size | |
| self.stride = upsample | |
| self.conv1 = torch.nn.ConvTranspose2d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=self.stride, | |
| stride=self.stride, | |
| padding=(0, 0), | |
| bias=False, | |
| dilation=(1, 1), | |
| ) | |
| self.bn1 = nn.BatchNorm2d(in_channels, momentum=momentum) | |
| self.conv_block2 = ConvBlockRes( | |
| out_channels * 2, out_channels, kernel_size, momentum, has_film, | |
| ) | |
| self.bn2 = nn.BatchNorm2d(in_channels, momentum=momentum) | |
| self.has_film = has_film | |
| self.init_weights() | |
| def init_weights(self): | |
| r"""Initialize weights.""" | |
| init_bn(self.bn1) | |
| init_layer(self.conv1) | |
| def forward( | |
| self, input_tensor: torch.Tensor, concat_tensor: torch.Tensor, film_dict: Dict, | |
| ) -> torch.Tensor: | |
| r"""Forward data into the module. | |
| Args: | |
| input_tensor: (batch_size, input_feature_maps, downsampled_time_steps, downsampled_freq_bins) | |
| concat_tensor: (batch_size, input_feature_maps, time_steps, freq_bins) | |
| Returns: | |
| output_tensor: (batch_size, output_feature_maps, time_steps, freq_bins) | |
| """ | |
| # b1 = film_dict['beta1'] | |
| b1 = film_dict['beta1'] | |
| x = self.conv1(F.leaky_relu_(self.bn1(input_tensor) + b1)) | |
| # (batch_size, input_feature_maps, time_steps, freq_bins) | |
| x = torch.cat((x, concat_tensor), dim=1) | |
| # (batch_size, input_feature_maps * 2, time_steps, freq_bins) | |
| x = self.conv_block2(x, film_dict['conv_block2']) | |
| # output_tensor: (batch_size, output_feature_maps, time_steps, freq_bins) | |
| return x | |
| class ResUNet30_Base(nn.Module, Base): | |
| def __init__(self, input_channels, output_channels): | |
| super(ResUNet30_Base, self).__init__() | |
| window_size = 2048 | |
| hop_size = 320 | |
| center = True | |
| pad_mode = "reflect" | |
| window = "hann" | |
| momentum = 0.01 | |
| self.output_channels = output_channels | |
| self.target_sources_num = 1 | |
| self.K = 3 | |
| self.time_downsample_ratio = 2 ** 5 # This number equals 2^{#encoder_blcoks} | |
| self.stft = STFT( | |
| n_fft=window_size, | |
| hop_length=hop_size, | |
| win_length=window_size, | |
| window=window, | |
| center=center, | |
| pad_mode=pad_mode, | |
| freeze_parameters=True, | |
| ) | |
| self.istft = ISTFT( | |
| n_fft=window_size, | |
| hop_length=hop_size, | |
| win_length=window_size, | |
| window=window, | |
| center=center, | |
| pad_mode=pad_mode, | |
| freeze_parameters=True, | |
| ) | |
| self.bn0 = nn.BatchNorm2d(window_size // 2 + 1, momentum=momentum) | |
| self.pre_conv = nn.Conv2d( | |
| in_channels=input_channels, | |
| out_channels=32, | |
| kernel_size=(1, 1), | |
| stride=(1, 1), | |
| padding=(0, 0), | |
| bias=True, | |
| ) | |
| self.encoder_block1 = EncoderBlockRes1B( | |
| in_channels=32, | |
| out_channels=32, | |
| kernel_size=(3, 3), | |
| downsample=(2, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.encoder_block2 = EncoderBlockRes1B( | |
| in_channels=32, | |
| out_channels=64, | |
| kernel_size=(3, 3), | |
| downsample=(2, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.encoder_block3 = EncoderBlockRes1B( | |
| in_channels=64, | |
| out_channels=128, | |
| kernel_size=(3, 3), | |
| downsample=(2, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.encoder_block4 = EncoderBlockRes1B( | |
| in_channels=128, | |
| out_channels=256, | |
| kernel_size=(3, 3), | |
| downsample=(2, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.encoder_block5 = EncoderBlockRes1B( | |
| in_channels=256, | |
| out_channels=384, | |
| kernel_size=(3, 3), | |
| downsample=(2, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.encoder_block6 = EncoderBlockRes1B( | |
| in_channels=384, | |
| out_channels=384, | |
| kernel_size=(3, 3), | |
| downsample=(1, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.conv_block7a = EncoderBlockRes1B( | |
| in_channels=384, | |
| out_channels=384, | |
| kernel_size=(3, 3), | |
| downsample=(1, 1), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.decoder_block1 = DecoderBlockRes1B( | |
| in_channels=384, | |
| out_channels=384, | |
| kernel_size=(3, 3), | |
| upsample=(1, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.decoder_block2 = DecoderBlockRes1B( | |
| in_channels=384, | |
| out_channels=384, | |
| kernel_size=(3, 3), | |
| upsample=(2, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.decoder_block3 = DecoderBlockRes1B( | |
| in_channels=384, | |
| out_channels=256, | |
| kernel_size=(3, 3), | |
| upsample=(2, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.decoder_block4 = DecoderBlockRes1B( | |
| in_channels=256, | |
| out_channels=128, | |
| kernel_size=(3, 3), | |
| upsample=(2, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.decoder_block5 = DecoderBlockRes1B( | |
| in_channels=128, | |
| out_channels=64, | |
| kernel_size=(3, 3), | |
| upsample=(2, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.decoder_block6 = DecoderBlockRes1B( | |
| in_channels=64, | |
| out_channels=32, | |
| kernel_size=(3, 3), | |
| upsample=(2, 2), | |
| momentum=momentum, | |
| has_film=True, | |
| ) | |
| self.after_conv = nn.Conv2d( | |
| in_channels=32, | |
| out_channels=output_channels * self.K, | |
| kernel_size=(1, 1), | |
| stride=(1, 1), | |
| padding=(0, 0), | |
| bias=True, | |
| ) | |
| self.init_weights() | |
| def init_weights(self): | |
| init_bn(self.bn0) | |
| init_layer(self.pre_conv) | |
| init_layer(self.after_conv) | |
| def feature_maps_to_wav( | |
| self, | |
| input_tensor: torch.Tensor, | |
| sp: torch.Tensor, | |
| sin_in: torch.Tensor, | |
| cos_in: torch.Tensor, | |
| audio_length: int, | |
| ) -> torch.Tensor: | |
| r"""Convert feature maps to waveform. | |
| Args: | |
| input_tensor: (batch_size, target_sources_num * output_channels * self.K, time_steps, freq_bins) | |
| sp: (batch_size, input_channels, time_steps, freq_bins) | |
| sin_in: (batch_size, input_channels, time_steps, freq_bins) | |
| cos_in: (batch_size, input_channels, time_steps, freq_bins) | |
| (There is input_channels == output_channels for the source separation task.) | |
| Outputs: | |
| waveform: (batch_size, target_sources_num * output_channels, segment_samples) | |
| """ | |
| batch_size, _, time_steps, freq_bins = input_tensor.shape | |
| x = input_tensor.reshape( | |
| batch_size, | |
| self.target_sources_num, | |
| self.output_channels, | |
| self.K, | |
| time_steps, | |
| freq_bins, | |
| ) | |
| # x: (batch_size, target_sources_num, output_channels, self.K, time_steps, freq_bins) | |
| mask_mag = torch.sigmoid(x[:, :, :, 0, :, :]) | |
| _mask_real = torch.tanh(x[:, :, :, 1, :, :]) | |
| _mask_imag = torch.tanh(x[:, :, :, 2, :, :]) | |
| # linear_mag = torch.tanh(x[:, :, :, 3, :, :]) | |
| _, mask_cos, mask_sin = magphase(_mask_real, _mask_imag) | |
| # mask_cos, mask_sin: (batch_size, target_sources_num, output_channels, time_steps, freq_bins) | |
| # Y = |Y|cos∠Y + j|Y|sin∠Y | |
| # = |Y|cos(∠X + ∠M) + j|Y|sin(∠X + ∠M) | |
| # = |Y|(cos∠X cos∠M - sin∠X sin∠M) + j|Y|(sin∠X cos∠M + cos∠X sin∠M) | |
| out_cos = ( | |
| cos_in[:, None, :, :, :] * mask_cos - sin_in[:, None, :, :, :] * mask_sin | |
| ) | |
| out_sin = ( | |
| sin_in[:, None, :, :, :] * mask_cos + cos_in[:, None, :, :, :] * mask_sin | |
| ) | |
| # out_cos: (batch_size, target_sources_num, output_channels, time_steps, freq_bins) | |
| # out_sin: (batch_size, target_sources_num, output_channels, time_steps, freq_bins) | |
| # Calculate |Y|. | |
| out_mag = F.relu_(sp[:, None, :, :, :] * mask_mag) | |
| # out_mag = F.relu_(sp[:, None, :, :, :] * mask_mag + linear_mag) | |
| # out_mag: (batch_size, target_sources_num, output_channels, time_steps, freq_bins) | |
| # Calculate Y_{real} and Y_{imag} for ISTFT. | |
| out_real = out_mag * out_cos | |
| out_imag = out_mag * out_sin | |
| # out_real, out_imag: (batch_size, target_sources_num, output_channels, time_steps, freq_bins) | |
| # Reformat shape to (N, 1, time_steps, freq_bins) for ISTFT where | |
| # N = batch_size * target_sources_num * output_channels | |
| shape = ( | |
| batch_size * self.target_sources_num * self.output_channels, | |
| 1, | |
| time_steps, | |
| freq_bins, | |
| ) | |
| out_real = out_real.reshape(shape) | |
| out_imag = out_imag.reshape(shape) | |
| # ISTFT. | |
| x = self.istft(out_real, out_imag, audio_length) | |
| # (batch_size * target_sources_num * output_channels, segments_num) | |
| # Reshape. | |
| waveform = x.reshape( | |
| batch_size, self.target_sources_num * self.output_channels, audio_length | |
| ) | |
| # (batch_size, target_sources_num * output_channels, segments_num) | |
| return waveform | |
| def forward(self, mixtures, film_dict): | |
| """ | |
| Args: | |
| input: (batch_size, segment_samples, channels_num) | |
| Outputs: | |
| output_dict: { | |
| 'wav': (batch_size, segment_samples, channels_num), | |
| 'sp': (batch_size, channels_num, time_steps, freq_bins)} | |
| """ | |
| mag, cos_in, sin_in = self.wav_to_spectrogram_phase(mixtures) | |
| x = mag | |
| # Batch normalization | |
| x = x.transpose(1, 3) | |
| x = self.bn0(x) | |
| x = x.transpose(1, 3) | |
| """(batch_size, chanenls, time_steps, freq_bins)""" | |
| # Pad spectrogram to be evenly divided by downsample ratio. | |
| origin_len = x.shape[2] | |
| pad_len = ( | |
| int(np.ceil(x.shape[2] / self.time_downsample_ratio)) * self.time_downsample_ratio | |
| - origin_len | |
| ) | |
| x = F.pad(x, pad=(0, 0, 0, pad_len)) | |
| """(batch_size, channels, padded_time_steps, freq_bins)""" | |
| # Let frequency bins be evenly divided by 2, e.g., 513 -> 512 | |
| x = x[..., 0 : x.shape[-1] - 1] # (bs, channels, T, F) | |
| # UNet | |
| x = self.pre_conv(x) | |
| x1_pool, x1 = self.encoder_block1(x, film_dict['encoder_block1']) # x1_pool: (bs, 32, T / 2, F / 2) | |
| x2_pool, x2 = self.encoder_block2(x1_pool, film_dict['encoder_block2']) # x2_pool: (bs, 64, T / 4, F / 4) | |
| x3_pool, x3 = self.encoder_block3(x2_pool, film_dict['encoder_block3']) # x3_pool: (bs, 128, T / 8, F / 8) | |
| x4_pool, x4 = self.encoder_block4(x3_pool, film_dict['encoder_block4']) # x4_pool: (bs, 256, T / 16, F / 16) | |
| x5_pool, x5 = self.encoder_block5(x4_pool, film_dict['encoder_block5']) # x5_pool: (bs, 384, T / 32, F / 32) | |
| x6_pool, x6 = self.encoder_block6(x5_pool, film_dict['encoder_block6']) # x6_pool: (bs, 384, T / 32, F / 64) | |
| x_center, _ = self.conv_block7a(x6_pool, film_dict['conv_block7a']) # (bs, 384, T / 32, F / 64) | |
| x7 = self.decoder_block1(x_center, x6, film_dict['decoder_block1']) # (bs, 384, T / 32, F / 32) | |
| x8 = self.decoder_block2(x7, x5, film_dict['decoder_block2']) # (bs, 384, T / 16, F / 16) | |
| x9 = self.decoder_block3(x8, x4, film_dict['decoder_block3']) # (bs, 256, T / 8, F / 8) | |
| x10 = self.decoder_block4(x9, x3, film_dict['decoder_block4']) # (bs, 128, T / 4, F / 4) | |
| x11 = self.decoder_block5(x10, x2, film_dict['decoder_block5']) # (bs, 64, T / 2, F / 2) | |
| x12 = self.decoder_block6(x11, x1, film_dict['decoder_block6']) # (bs, 32, T, F) | |
| x = self.after_conv(x12) | |
| # Recover shape | |
| x = F.pad(x, pad=(0, 1)) | |
| x = x[:, :, 0:origin_len, :] | |
| audio_length = mixtures.shape[2] | |
| # Recover each subband spectrograms to subband waveforms. Then synthesis | |
| # the subband waveforms to a waveform. | |
| separated_audio = self.feature_maps_to_wav( | |
| input_tensor=x, | |
| # input_tensor: (batch_size, target_sources_num * output_channels * self.K, T, F') | |
| sp=mag, | |
| # sp: (batch_size, input_channels, T, F') | |
| sin_in=sin_in, | |
| # sin_in: (batch_size, input_channels, T, F') | |
| cos_in=cos_in, | |
| # cos_in: (batch_size, input_channels, T, F') | |
| audio_length=audio_length, | |
| ) | |
| # (batch_size, target_sources_num * output_channels, subbands_num, segment_samples) | |
| output_dict = {'waveform': separated_audio} | |
| return output_dict | |
| def get_film_meta(module): | |
| film_meta = {} | |
| if hasattr(module, 'has_film'):\ | |
| if module.has_film: | |
| film_meta['beta1'] = module.bn1.num_features | |
| film_meta['beta2'] = module.bn2.num_features | |
| else: | |
| film_meta['beta1'] = 0 | |
| film_meta['beta2'] = 0 | |
| for child_name, child_module in module.named_children(): | |
| child_meta = get_film_meta(child_module) | |
| if len(child_meta) > 0: | |
| film_meta[child_name] = child_meta | |
| return film_meta | |
| class ResUNet30(nn.Module): | |
| def __init__(self, input_channels, output_channels, condition_size): | |
| super(ResUNet30, self).__init__() | |
| self.base = ResUNet30_Base( | |
| input_channels=input_channels, | |
| output_channels=output_channels, | |
| ) | |
| self.film_meta = get_film_meta( | |
| module=self.base, | |
| ) | |
| self.film = FiLM( | |
| film_meta=self.film_meta, | |
| condition_size=condition_size | |
| ) | |
| def forward(self, input_dict): | |
| mixtures = input_dict['mixture'] | |
| conditions = input_dict['condition'] | |
| film_dict = self.film( | |
| conditions=conditions, | |
| ) | |
| output_dict = self.base( | |
| mixtures=mixtures, | |
| film_dict=film_dict, | |
| ) | |
| return output_dict | |
| def chunk_inference(self, input_dict): | |
| chunk_config = { | |
| 'NL': 1.0, | |
| 'NC': 3.0, | |
| 'NR': 1.0, | |
| 'RATE': self.sampling_rate | |
| } | |
| mixtures = input_dict['mixture'] | |
| conditions = input_dict['condition'] | |
| film_dict = self.film( | |
| conditions=conditions, | |
| ) | |
| NL = int(chunk_config['NL'] * chunk_config['RATE']) | |
| NC = int(chunk_config['NC'] * chunk_config['RATE']) | |
| NR = int(chunk_config['NR'] * chunk_config['RATE']) | |
| L = mixtures.shape[2] | |
| out_np = np.zeros([1, L]) | |
| WINDOW = NL + NC + NR | |
| current_idx = 0 | |
| while current_idx + WINDOW < L: | |
| chunk_in = mixtures[:, :, current_idx:current_idx + WINDOW] | |
| chunk_out = self.base( | |
| mixtures=chunk_in, | |
| film_dict=film_dict, | |
| )['waveform'] | |
| chunk_out_np = chunk_out.squeeze(0).cpu().data.numpy() | |
| if current_idx == 0: | |
| out_np[:, current_idx:current_idx+WINDOW-NR] = \ | |
| chunk_out_np[:, :-NR] if NR != 0 else chunk_out_np | |
| else: | |
| out_np[:, current_idx+NL:current_idx+WINDOW-NR] = \ | |
| chunk_out_np[:, NL:-NR] if NR != 0 else chunk_out_np[:, NL:] | |
| current_idx += NC | |
| if current_idx < L: | |
| chunk_in = mixtures[:, :, current_idx:current_idx + WINDOW] | |
| chunk_out = self.base( | |
| mixtures=chunk_in, | |
| film_dict=film_dict, | |
| )['waveform'] | |
| chunk_out_np = chunk_out.squeeze(0).cpu().data.numpy() | |
| seg_len = chunk_out_np.shape[1] | |
| out_np[:, current_idx + NL:current_idx + seg_len] = \ | |
| chunk_out_np[:, NL:] | |
| return out_np |