Spaces:
Runtime error
Runtime error
Commit
·
38cb277
1
Parent(s):
5638854
Load local model
Browse files
app.py
CHANGED
|
@@ -15,7 +15,11 @@ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
| 15 |
|
| 16 |
# The model will be loaded in the future
|
| 17 |
MODEL_NAME = CHECKPOINTS_DIR / "audiosep_base_4M_steps.ckpt"
|
| 18 |
-
MODEL =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
description = """
|
|
@@ -28,15 +32,6 @@ numerous tasks such as audio event separation, musical instrument separation, an
|
|
| 28 |
"""
|
| 29 |
|
| 30 |
|
| 31 |
-
def get_model():
|
| 32 |
-
model = build_audiosep(
|
| 33 |
-
config_yaml="config/audiosep_base.yaml",
|
| 34 |
-
checkpoint_path=MODEL_NAME,
|
| 35 |
-
device=DEVICE,
|
| 36 |
-
)
|
| 37 |
-
return model
|
| 38 |
-
|
| 39 |
-
|
| 40 |
def inference(audio_file_path: str, text: str):
|
| 41 |
print(f"Separate audio from [{audio_file_path}] with textual query [{text}]")
|
| 42 |
mixture, _ = librosa.load(audio_file_path, sr=32000, mono=True)
|
|
@@ -60,36 +55,6 @@ def inference(audio_file_path: str, text: str):
|
|
| 60 |
return 32000, np.round(sep_segment * 32767).astype(np.int16)
|
| 61 |
|
| 62 |
|
| 63 |
-
def download_models():
|
| 64 |
-
CHECKPOINTS_DIR.mkdir(exist_ok=True)
|
| 65 |
-
success_file = CHECKPOINTS_DIR / "_SUCCESS"
|
| 66 |
-
|
| 67 |
-
models = (
|
| 68 |
-
(
|
| 69 |
-
"https://drive.google.com/file/d/1wQuXThdATXrkmkPM2sRGaNapJ4mTqmlY/view?usp=sharing",
|
| 70 |
-
MODEL_NAME,
|
| 71 |
-
),
|
| 72 |
-
(
|
| 73 |
-
"https://drive.google.com/file/d/11oj8_tPG6SXgw5fIEsZ5HiWZnJOrvdhw/view?usp=sharing",
|
| 74 |
-
CHECKPOINTS_DIR / "music_speech_audioset_epoch_15_esc_89.98.pt",
|
| 75 |
-
),
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
def download(models):
|
| 79 |
-
for model_url, model_path in models:
|
| 80 |
-
gdown.download(model_url, str(model_path), quiet=False, fuzzy=True)
|
| 81 |
-
|
| 82 |
-
success_file.touch()
|
| 83 |
-
|
| 84 |
-
global MODEL
|
| 85 |
-
MODEL = get_model()
|
| 86 |
-
button.update(value="Separate", interactive=True)
|
| 87 |
-
|
| 88 |
-
if not success_file.exists():
|
| 89 |
-
thread = Thread(target=download, args=[models])
|
| 90 |
-
thread.start()
|
| 91 |
-
|
| 92 |
-
|
| 93 |
with gr.Blocks(title="AudioSep") as demo:
|
| 94 |
gr.Markdown(description)
|
| 95 |
with gr.Row():
|
|
@@ -100,16 +65,14 @@ with gr.Blocks(title="AudioSep") as demo:
|
|
| 100 |
with gr.Column():
|
| 101 |
output_audio = gr.Audio(scale=10)
|
| 102 |
button = gr.Button(
|
| 103 |
-
"
|
| 104 |
variant="primary",
|
| 105 |
scale=2,
|
| 106 |
size="lg",
|
| 107 |
-
interactive=
|
| 108 |
)
|
| 109 |
button.click(
|
| 110 |
fn=inference, inputs=[input_audio, text], outputs=[output_audio]
|
| 111 |
)
|
| 112 |
|
| 113 |
-
download_models()
|
| 114 |
-
|
| 115 |
demo.queue().launch(share=True)
|
|
|
|
| 15 |
|
| 16 |
# The model will be loaded in the future
|
| 17 |
MODEL_NAME = CHECKPOINTS_DIR / "audiosep_base_4M_steps.ckpt"
|
| 18 |
+
MODEL = build_audiosep(
|
| 19 |
+
config_yaml="config/audiosep_base.yaml",
|
| 20 |
+
checkpoint_path=MODEL_NAME,
|
| 21 |
+
device=DEVICE,
|
| 22 |
+
)
|
| 23 |
|
| 24 |
|
| 25 |
description = """
|
|
|
|
| 32 |
"""
|
| 33 |
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def inference(audio_file_path: str, text: str):
|
| 36 |
print(f"Separate audio from [{audio_file_path}] with textual query [{text}]")
|
| 37 |
mixture, _ = librosa.load(audio_file_path, sr=32000, mono=True)
|
|
|
|
| 55 |
return 32000, np.round(sep_segment * 32767).astype(np.int16)
|
| 56 |
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
with gr.Blocks(title="AudioSep") as demo:
|
| 59 |
gr.Markdown(description)
|
| 60 |
with gr.Row():
|
|
|
|
| 65 |
with gr.Column():
|
| 66 |
output_audio = gr.Audio(scale=10)
|
| 67 |
button = gr.Button(
|
| 68 |
+
"Separate",
|
| 69 |
variant="primary",
|
| 70 |
scale=2,
|
| 71 |
size="lg",
|
| 72 |
+
interactive=True,
|
| 73 |
)
|
| 74 |
button.click(
|
| 75 |
fn=inference, inputs=[input_audio, text], outputs=[output_audio]
|
| 76 |
)
|
| 77 |
|
|
|
|
|
|
|
| 78 |
demo.queue().launch(share=True)
|